ANNEXURE I

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune Department of Mechanical Engineering

Vision of the Bharati Vidyapeeth (Deemed to be University) College of Engineering is:

To be a World Class Institute for Social Transformation through Dynamic Education

Missions of the Bharati Vidyapeeth (Deemed to be University) College of Engineering are:

- To provide quality technical education with advanced equipment, qualified faculty members, infrastructure to meet needs of profession & society.
- > To provide an environment conducive to innovation, creativity, research and entrepreneurial leadership.
- To practice and promote professional ethics, transparency and accountability for social community, economic & environmental conditions.

Goals of the Bharati Vidyapeeth (Deemed to be) University College of Engineering are:

- Recruiting experienced faculty.
- > Organizing faculty development programs.
- > Identifying socio-economically relevant areas & emerging technologies.
- Constant review &up gradation of curricula.
- > Up gradation of laboratories, library & communication facilities.
- > Collaboration with industry and research & development organizations.
- Sharing of knowledge, infra-structure and resources.
- > Training, extension, testing and consultancy services.
- > Promoting interdisciplinary research.

Vision of the Mechanical Engineering Department is:

To develop, high quality Mechanical Engineers through dynamic education to meet social and global challenges.

Mission Statements of the Mechanical Engineering Department are:

- To provide extensive theoretical and practical knowledge to the students with well-equipped laboratories and ICT tools through motivated faculty members.
- > To inculcate aptitude for research, innovation and entrepreneurial qualities in students.
- To acquaint students with ethical, social and professional responsibilities to adapt to the demands of working environment.

Program Educational Objectives (PEOs) of the B. Tech. Mechanical are:

Graduates will be able,

- > To fulfill need of industry and society with theoretical and practical knowledge.
- > To engage in research, innovation, lifelong learning and continued professional development.
- > To fulfill professional ethics and social responsibilities.

PROGRAM OUTCOMES

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. *Modern tool usage*: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. *The engineer and society*: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. *Environment and sustainability*: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. *Ethics*: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. *Individual and team work*: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. *Communication*: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. *Life-long learning*: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Statements of Programme Specific Outcomes (PSOs)

PSO1: Apply the knowledge of thermal, design, manufacturing engineering and computational sciences to solve Mechanical Engineering problems.

PSO2: Apply Mechanical Engineering principles for research, innovation and develop entrepreneurial skills.

PSO3: Apply concepts of mechanical engineering to asses' societal, environmental, health and safety issues with professional ethics.

Sr.	Name of Course		Teaching Scheme (Hrs./Week)		Examination Scheme (Marks)					Credits					
No.	Code		L	Р	Т	ESE	IA	TW	OR	PR	Total	L	Р	Т	Total
1	C401	Industrial Automation	3	2	-	60	40	25	25		150	3	1	-	4
2	C402	Elective-I	3	2	-	60	40	25	-		125	3	1	-	4
3	C403	Production Planning & Control [@]	4	-	-	60	40	-	-	-	100	4	-	-	4
4	C404	Power Plant Technology	3	2	1	60	40	25	-	-	125	3	1	1	5
5	C405	Measurement & Metrology Techniques	-	2	-	-	-	25	25	-	50	-	1	-	1
6	C406	Machine Learning	-	2	-	-	-	25	25	-	50	-	1	-	1
7	C407	Project Stage-I	-	2	-	-	-	50	50	-	100	-	3	-	3
8	C408	Internship***	-	-	-	-	-	25	25	-	50	-	3	-	3
		Total	13	12	1	240	160	200	150	-	750	13	11	1	25

B. Tech. (Mechanical) Sem.-VII

[@]Industry Taught Course-V

Sr.	Course		Teaching Scheme (Hrs./Week)		Examination Scheme (Marks)					Credits					
No.	Code	Name of Course	L	L P T		ESE	IA	TW	OR	PR	Total	L	Р	Т	Total
1	C409	Renewable Energy Technologies	3	2	-	60	40	25	-	-	125	3	1	-	4
2	C410	Elective-II	3	2	-	60	40	25	-	-	125	3	1	-	4
3	C411	Energy Audit & Management [@]	4	-	-	60	40	-	-	-	100	4	-	-	4
4	C412	Reliability & Machine Condition Monitoring	3	2	1	60	40	25	25	-	150	3	1	1	5
5	C413	Project Stage-II	-	4	-	-	-	100	100	-	200	-	6	-	6
6	C414	Operations Research Practices		2	-	-	-	25#	-	-	25	-	1	-	1
7	C415	Robot Movement Systems		2	-	-	-	25#	-	-	25	-	1	-	1
		Total	13	14	1	240	160	225	125	-	750	13	11	1	25
8	C416	Research Paper Publication**						-			-		-		2

B. Tech. (Mechanical) Sem.-VIII

[@]Industry Taught Course-VI; #: Based on TW & internal oral examination; **Add-on Course; ***Period of 60 days

Elective-I	Six Sigma, Lean & Agile Manufacturing, Waste to Energy Conversion, Jig, Fixture & Die Design, Artificial Intelligence, Principles of Air Craft & Submarine Design
Elective -II	Industrial Product Design, Engineering Economics, Project Management & Ethics, Virtual Reality, Additive Manufacturing & Rapid Prototyping

INDUSTRIAL AUTOMATION (Course Code C401)

Designation of Course	Industri	Industrial Automation				
Teaching Scheme:	eme: Examination Scheme:		Credits Allotted			
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	- 03			
Tutorial:Hours/ Week	Internal Assessment	40 Marks	05			
Practical: - 02 Hours/ Week	Term Work	25 Marks	01			
	Oral/Practical	25 Marks	01			
	Total	150 Marks	04			

Course	The students should have knowledge of
Prerequisites: -	 Knowledge of Mathematics & Theory of Machines, Mechanical Engineering Systems Knowledge of Properties of Fluid, Turbomachinery Knowledge of Basic Electrical and Electronics
Course Objectives: -	 Understand automation technologies and identify advantages, limitations and applications of the same. Develop ability to recognize, articulate and solve industrial problems using automation technologies. To provide students with knowledge of the applications of fluid power systems in process, construction, robotics and manufacturing industries and able to design and implement automated systems using pneumatics. To make the students acquainted with the conceptual as well as practical knowledge of the PLC programming & latest technologies being used to achieve PLC Industrial Automation.
Course Outcomes: -	The students should be able to-
	 Understand & apply fundamentals of industrial automation. Understand concepts of control system and apply it for automation. Understand concepts related to fluid power system, Power units and its accessories. Understand concepts related to Control of fluid power and Control valves. Understand concepts related to Hydraulics and Pneumatics – Actuators and Circuits and its application. Understand concepts of PLC and Develop ladder diagram for industrial applications.

Course Contents

Unit IIntroduction to Industrial Automation and Robotics(06 Hrs	.)				
Introduction of Automation and Robotics, Historical Development, three laws of robotics by Isaac					
Asimov, Broad classes of industrial automation-Fixed, flexible and programmable and the	eir				
comparative study, Automation Principles and Strategies, USA Principle, Ten Strategies f	for				
Automation and production systems, Automation Migration Strategy-Manual Production	Automation and production systems, Automation Migration Strategy-Manual Production,				
Automated Production, Automated integrated production					
Unit IIAutomatic Control Systems and Control Actions(06 Hrs	.)				
Introduction to control systems: mechatronics system & its examples, mechatronics system	Introduction to control systems: mechatronics system & its examples, mechatronics system				
components. Open loop and closed loop system, effects of feedback and basic characteristic of					
feedback control systems, classification of control systems.					
Introduction to Controllers: Control System Parameters, Controller Modes, Control Actions,					
Types of Controllers-ON-OFF Controller, Proportional Controller (P-Controller), Proportional +					
Integral Controller (P-I Controller), Proportional + Derivative Controller (P-D Controlle	r),				

Proportional + Integral + Derivative Controller (P-I-D Controller), Effect of Proportional, Integral, and derivative control on the Time Response of the System

Control System Components: Elements of a Data Acquisition and Control System, Overview of the Input/Output Process, Data Acquisition Case Studies. Variable Frequency Drive, Servomotor, switches, Relays and Contactors.

Unit III Fundamentals of Industrial Fluid Power Systems

(06 Hrs.)

Fluid Power System: Components of fluid power system, advantages and limitations. Difference between electrical, pneumatic and fluid power systems. Seals, sealing materials. Types of pipes, hoses, material. Fluid conditioning through filters, strainers, sources of contamination and contamination control.

Power units and accessories: Types of power units, reservoir assembly, sizing of reservoirs, constructional details, pressure switches, temperature switches. Accumulators: Types, selection procedure, applications of accumulators. ISO symbols for hydraulic and pneumatic Components (06 Hrs.)

Unit IV | Fluid Power Control

Necessity of fluid control through pressure control, directional control and flow control valves. Control valves: i) Principle of pressure control valves, direct operated and pilot operated pressure relief valves, pressure reducing valve, sequence valve. ii) Principle of flow control valves, pressure compensated and non-compensated flow control valves. iii) Principle of directional control valves, types of directional control valves, two-way, three-way, four-way valves, check valve and shuttle valve. Open centre, close centre, tandem centre valves. Actuating devices- manually operated, mechanically operated, solenoid operated, pilot operated, lever operated.

Hydraulic & Pneumatic Circuits Unit V

(06 Hrs.)

Linear and rotary actuators: Types, construction and characteristics. Cylinder mountings, cushioning of cylinders.

Hydraulic & Pneumatic circuits: Simple reciprocating, regenerative, speed control (meter in, meter out and bleed off), sequencing, synchronization, traverse and feed, automatic reciprocating, fail safe circuit, counter balance circuit, actuator locking, unloading circuit, motor breaking circuit etc. Types of filters, pressure regulators, lubricators, mufflers, dryers, direction control valves, pneumatic actuators, shuttle valve, two pressure valve, quick exhaust valve and time delay valves. Speed regulating methods, pneumatic circuits, reciprocating, cascading time delay etc. Application of pneumatics in low-cost automation and in industrial automation. Development of Electrohydraulic Circuits and Electro-pneumatic Circuits.

Unit VI Programmable Logic Controller

(06 Hrs.)

Introduction to PLCs, Basic Structure of a PLC, Principles of Operation, PLC Programming Languages, Ladder diagram, Latching and internal relays, Timers and Counters, Selection of a PLCs for Control System, Application of PLCs for Automatic Control System. Concept of SCADA and its Applications,

Term Work

(Term work shall consists of minimum 8 experiments from following)

- 1. Study of P, P+I, P+D, P+I+D control actions using any trainer kit / simulation software.
- 2. To study working of servomotor and its applications in industrial automation.
- 3. To study working of variable frequency drive and its applications in industrial automation.
- 4. Study of flow control valves (Meter in, Meter out Circuits).
- 5. Study of directional control valves.
- 6. Study of pressure control valves.
- 7. Study of ISO/JIC Symbols for hydraulic and pneumatic systems.
- 8. Following experiments to be done on hydraulic trainer a) Regenerative circuit b) Speed control circuit c) Sequencing circuit d) Traverse and feed circuit etc.
- 9. Following experiments to be done on pneumatic trainer a) Automatic reciprocating circuit b) Speed control circuit c) Pneumatic circuit involving Shuttle valve/ Quick exhaust valve / Two pressure valve.
- 10. Design of simple hydraulic/pneumatic systems used in practice such as hydraulic clamp, jacks, dumper, forklift etc by using fluid simulation software's such as LVSIM®-HYD & PNEU, AUTOMATION STUDIO.

- 11. Study of PLC, SCADA and development of ladder logic for various industrial applications.
- 12. Industrial visit to study Hydraulic / Pneumatic based Automation systems.
- 13. Study of industrial pick and place robot and integrated automation.

Project Based Learning

Following are list for project-based learning (Not limited to)

- 1. . To prepare a demonstration model of PID Controller with any application.
- 2. To prepare a demonstration model of control system applications.
- 3. To prepare a demonstration model of applications of Fluid power systems.
- 4. To prepare a demonstration model of applications of electro-hydraulic and electropneumatic systems.
- 5. To prepare a demonstration model of pick and place robot with any application.
- 6. To prepare a demonstration model of any industrial automation system with PLC programming.

Textbooks

- 1. Automation, Production Systems and Computer Integrated Manufacturing M.P.Groover, Pearson Education.5th edition, 2009.
- 2. Majumdar S.R, Pneumatics Systems Principles and Maintenance , Tata McGraw Hill.
- 3. R. K. Mittal, I. J. Nagrath, "Robotics and Control", Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 4. Majumdar S.R, Oil Hydraulic system- Principle and maintenance ,Tata McGraw Hill.
- 5. Esposito Anthony, Fluid Power with application, Prentice Hall.
- 6. Stewart H. L, Hydraulics and Pneumatics, Taraporewala Publication.
- 7. Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G. Odrey, "Industrial Robotics: Technology, Programming and Applications", McGraw Hill Book Company.
- 8. Pipenger J.J, Industrial Hydraulics, McGraw Hill .

Reference Books

- 1. Automation, Production Systems and Computer Integrated Manufacturing M.P.Groover, Pearson Education.5th edition, 2009.
- 2. R. K. Mittal, I. J. Nagrath, "Robotics and Control", Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 3. Stuart A Boyer: SCADA supervisory control and data acquisition, International Society of Automation, 2010

Unit Tests

Unit Test-I	Unit- I,II, III
Unit Test-II	Unit- IV, V, VI

ELECTIVE-I: SIX SIGMA, LEAN & AGILE MANUFACTURING (Course Code C402.1)

Designation of Course	Six sigma, Lean & Agile Manufacturing				
Teaching Scheme:	Examination Scheme:		Credits Allotted		
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03		
Tutorial:Hours/ Week	Internal Assessment	40 Marks	03		
Practical: - 02 Hours/ Week	Term Work	25 Marks	01		
	Total	125 Marks	04		

Course	Student should have knowledge of
Prerequisites:	1. Students should have Basic knowledge of Industrial Engineering.
-	2. Students should have Basic knowledge of Statistics
	Student should be able to
Course	1. Use of six sigma technique to reduce variation
Objectives: -	2. Use of Lean manufacturing for process improvement
	3. Use of Agile manufacturing
	Learner will be able to
	1. Understand and work with the Lean manufacturing process
Course	2. Understand and work with the Agile Production System
Outcomes: -	3. Management in the Agile Organization.
Outcomes	4. Understand basic statistical processes.
	5. Understand and calculate the six sigma levels
	6. Understand and work with the DMAIC process

Course Contents

Unit 1 Lean Manufacturing	06 Hrs.			
Origin and objectives of lean manufacturing, 3M concept, study of Ford and Toyota Production				
system, Just in Time (JIT) manufacturing, lean building blocks. Value Creation	and Waste			
elimination, seven types of waste, pull production, different models of pull production	on, Kanban			
system, design of Kanban quantities, Kaizen, tools for continuous improvement.	The value			
stream-benefits, mapping process. Current state maps-mapping icons, mapping steps. VSM				
exercise. Takt time calculations standardize work- standard work sequence, timing and working				
progress Quality at source-Automation/Jidoka, Visual management system	, Mistake			
Proofing/Poka-Yoke.5s technique-Elements and waste elimination through 5s. advantages and				
benefits, 5s audit, Visual control aids for improvements, Flexible work force.				
Unit 2 Agile Production system and Practices	06 Hrs.			

Agile production system-the task allied organization-production planning and control, quality assurance, purchasing maintenance, overview of production support, business operations, engineering, finance and accounting. Agile Practices-Agile practice for product development, manufacturing Agile practice, understanding the value of investment in people.

Unit 3	Management in the Agile Organization06 Hrs.			
Old management styles, role of management in agile organization-vision champion, team leader,				
coach, b	coach, business analyzer, supporting the new culture-performance appraisal system, selection			
system,	system, reward and recognition system, organizational measurement, organizational learning			
processes.				
Unit 4	Statistics and probability distribution	06 Hrs.		

Basic statistics, probability distributions, normal distribution, central limit theorem, measurement system analysis – precision, accuracy, bias, linearity, gage repeatability & reproducibility. Process capability analysis.

Multi-Variate analysis, sampling techniques, Hypothesis testing, testing with normal data, One Way ANOVA, nonparametric tests for non-normal data. Chi-square tests

Unit 5 Introduction to Six Sigma

06 Hrs.

Six Sigma Defined, Calculating the Sigma Level – Toolset, Six Sigma Framework, DMAIC – The Six Sigma Improvement Process, Introduction to Measure, Introduction to Define, Process Thinking, Spaghetti Charts, Value Stream Mapping Toolset, Pareto Chart Toolset, Project Selection Toolset, Project Charter Toolset

Unit 6 Six Sigma in manufacturing

06 Hrs.

Introduction to Measure, Measurements, Discrete vs. Continuous Measurements, Measurement Subjects, Measurement as a Process, The Analysis of Measurement Systems, Statistical Process Control – Introduction and Background, Introduction to Control Charts, Control Chart Limits, More On Control Limits, Cause & Effect Diagram Toolset, Introduction to Hypothesis Testing, The Process on Trial, The Hypothesis – Accept or Reject, Types of Error, Hypothesis Testing, Confidence Intervals, Design of Experiments, Design for Six Sigma (DFSS), Benchmarking, Brainstorming

Term Work:

- 1. Case study on Just in Time system
- 2. Case study on Toyota production system
- 3. Case study on Kanban and Kaizen production system
- 4. Case study on Management in the Agile Organization
- 5. To find the Process capability.
- 6. Application of Chi-square tests
- 7. Case study on Sigma level calculations.
- 8. Case study on design of Experiment.

Project Based Learning

- 1. Chart preparation showing different methods of waste elimination.
- 2. Chart preparation for showing the various elements of JIT system.
- 3. Study of a system based on value stream mapping.
- 4. Demonstration of elimination of waste using 5S system.
- 5. Demonstration of Cause and effect diagram for a system.
- 6. Demonstration of control charts for a system.
- 7. Study of system using Six sigma for reduction in variation.
- 8. Formulation of Hypothesis, testing and analysis.

Textbooks:

- 1. Jain R. K., "Engineering Metrology", Khanna Publishers
- 2. Hume K. J., "Engineering Metrology", Macdonald, 1950
- 3. Sharp K. W. B., "Practical Engineering Metrology", Pitman Publication, 1970.

Reference Book:

- 1. Productions and Operations Management Chasel Aquilino Dreamtech latest edition.
- Toyota Production System An integrated approach to Just in Time Yasuhiro Monden Engineering and Management Press - Institute of Industrial Engineers Norcross Georgia-1983.
- 3. The Machine that changed the World. The Story of Lean Production James P Womack Daniel T Jones and Daniel Roos -Harper Perennial edition published 1991.

- 4. Lean Thinking James Womack ISBN 0743249275 2003.
 5. Japanese Manufacturing Techniques. The Nine Hidden Lessons by simplicity Richard Stumberger - ASQC Press 1991.
- 6. Quality Function Development James Bossert ASQC Press 1991.

Unit Test -

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

ELECTIVE-I: WASTE TO ENERGY CONVERSION
(Course Code C402.2)

Designation of Course	Waste to Energy Conversion		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	- 03
Tutorial: Hours/ Week	Internal Assessment	40 Marks	- 03
Practical: - 02 Hours/ Week	Term Work	25 Marks	01
	Oral/Practical	Marks	01
	Total	125 Marks	04

Course	The students should have knowledge of
Course	The students should have knowledge of -
Prerequisites:-	1. Mechanical Engineering System.
	2. Thermodynamic principals
	3. Thermodynamic Applications
	4. Power Plant Technology
Course	1. To enable students to understand of the concept of Waste to Energy.
Objectives:-	2. To learn about the best available technologies for Waste to Energy
U U	Conversion
Course	On completion of the course, students will be able to-
Outcomes:-	1. Understand fundamentals of waste and waste Processing.
	2. Understand Environmental and social impacts of waste to energy
	conversion plants
	3. Understand fundamentals Pyrolysis and Combustion technology and
	analyze their performance
	4. Understand Gasification technologies and analysis their performance.
	5. Understand fundamentals of Anaerobic Digestion.
	6. Understand Air quality equipment and systems for waste to energy
	conversion plants

Course Contents

Unit I	Introduction to Waste and Waste Processing	(06Hrs.)		
Solid wa	ste sources, types, composition, properties, global warming; Municipal se	olid waste:		
Physical,	Physical, chemical and biological properties, waste collection and, transfer stations, waste			
minimiza	tion and recycling of municipal waste, segregation of waste, size reduction,	, managing		
waste, sta	tus of technologies for generation of energy from waste treatment and dispo	sal aerobic		
composti	composting, incineration, furnace type and design, medical waste / pharmaceutical waste			
treatment	technologies incineration, environmental impacts, measures to mitigate env	ironmental		
effects du	e to incineration.			
TT 24 TT	Environmental and social impacts of waste to energy conversion	(06 Hrs.)		
Unit II	plants	(00 HIS.)		
Contribut	ions of WTE conversion to waste reduction and energy generation, Air of	quality and		
residue management considerations of WTE conversion, Greenhouse gas profile of WTE,				
Compatibility of WTE with recycling, Health and safety aspects of WTE, Integrated planning for				
WTE plants, Future trends.				

Unit III Pyrolysis and Combustion technology

Pyrolysis - Introduction, Pyrolysis, Pyrolysis reactors, Investigations on pyrolysis of MSW, Plusses and minusses of the process, Utilization of the process products, Commercial scale pyrolysis plants.

Combustion technology - Introduction, Benefits & issues, Chemistry of combustion, Efficiency of combustion, Process stabilization & combustion control, MSW incinerator systems, Grate technology, Fluidized bed combustion technology, Refuse-derived fuel combustion.

Unit IV Gasification technologies

Gasification, Conventional gasification, Chemical reactions in gasification, Key factors for gasification of waste, Gasifier configurations, Fixed bed gasifiers, Fluidized bed gasifiers, Slagging gasification, Plasma gasification, Plasma arc gasifier, Plasma technology for treatment of incinerator residues & hazardous waste, Issues with plasma arc gasification, Gasification plants in operation, Energy recovery from plastics, Recycling of plastic waste, Technologies for energy recovery from plastic waste, Demonstration-level liquid fuels production from plastic Pyrolysis, Production of gaseous fuel, Commercial systems, Fuel properties of pyrolytic oils.

Unit V Anaerobic Digestion

Anaerobic food web, Bioreactor configurations, Experiences in different countries, Fundamentals behind anaerobic digestion, Thermophilic anaerobic digestion, Power-to-gas concept to store electric power in the natural gas grid, Electrolysis; Biomethanation at thermophilic conditions, Microbial electrochemical systems, Bioreactor configurations.

Unit VIAir quality equipment and systems for waste to energy conversion
plants(06 Hrs.)

Air quality considerations and regulations for municipal, waste combustors, Acid gas scrubbing in municipal waste combustors, Particulate control devices utilized at waste combustion, facilities, Control of nitrogen oxide emissions and hazardous, air pollutants from waste combustors, Air pollution control cost–benefit analysis, Air quality technology innovations for municipal, waste combustors

Term Work

- 1. Market survey on municipal Waste and Waste Processing.
- 2. Study of Pyrolysis technology.
- 3. Study of Combustion technology.
- 4. Study of Gasification technologies.
- 5. Study of Anaerobic Digestion.
- 6. Visit to Biogas Power Plant.
- 7. Visit to Pyrolysis reactors or Gasifier.
- 8. Case study on Environmental and social impacts of waste to energy conversion plants.
- 9. Case study on Air quality equipment and systems for waste to energy conversion plants.

Project Based Learning

Following is the list of Topics for project based learning (Not Limited to) based on the syllabus Contents:

- 1. To prepare a chart Waste and Waste Processing
- 2. To prepare a chart on Environmental and social impacts of waste to energy conversion plants
- 3. To prepare a chart on Pyrolysis Process.
- 4. To prepare a chart on Combustion technology for waste energy conversion.
- 5. To prepare a chart on Gasification technologies.

(06 Hrs.)

(06 Hrs.)

- 6. To prepare a chart on Anaerobic Digester.
- 7. To prepare demonstration model of Pyrolysis Process
- 8. To prepare demonstration model of Fixed bed gasifiers
- 9. To prepare demonstration model of Fluidized bed gasifiers
- 10. To prepare demonstration model of Plasma arc gasifier
- 11. To prepare demonstration model of Anaerobic Digestion
- 12. Case study on Pyrolysis technology
- 13. Case study on Combustion technology
- 14. Case study on Gasification technologies
- 15. Case study on Anaerobic Digestion

Text Books:

- 1. Nicholas P Cheremisinoff, —Handbook of Solid Waste Management and Waste Minimization Technologies^I, An Imprint of Elsevier, New Delhi, 2003.
- 2. P AarneVesilind, William A Worrell and Debra R Reinhart, —Solid Waste Engineering^{II}, 2nd edition 2002.
- 3. M Dutta, B P Parida, B K Guha and T R Surkrishnan, —Industrial Solid Waste Management and Landfilling practicel, Reprint Edition New Delhi, 1999.
- 4. M. L. Davis and D. A. Cornwell, —Introduction to environmental engineering^{||}, International Edition, 2008.
- 5. C. S. Rao, —Environmental Pollution Control Engineering, Wiley Eastern Ltd. New Delhi, 1995.
- 6. S. K. Agarwal, —Industrial Environment Assessment and Strategy, APH Publishing Corporation, New Delhi, 1996.

Reference Books:

- 1. Rogoff, M.J. and Screve, F., "Waste-to-Energy: Technologies and Project Implementation", Elsevier Store.
- 2. Young G.C., "Municipal Solid Waste to Energy Conversion processes", John Wiley and Sons.
- 3. Harker, J.H. and Backhusrt, J.R., "Fuel and Energy", Academic Press Inc.
- 4. EL-Halwagi, M.M., "Biogas Technology- Transfer and Diffusion", Elsevier Applied Science.
- 5. Hall, D.O. and Overeed, R.P.," Biomass Renewable Energy", John Willy and Sons.
- 6. Mondal, P. and Dalai, A.K. eds., 2017. Sustainable Utilization of Natural Resources. CRC Press.
- 7. C Parker and T Roberts (Ed), —Energy from Waste, An Evaluation of Conversion Technologies, Elsevier Applied Science, London, 1985.
- 8. KL Shah, —Basics of Solid and Hazardous Waste Management Technology, Prentice Hall, Reprint Edition, 2000.
- 9. M Datta, —Waste Disposal in Engineered Landfills^{||}, Narosa Publishing House, 1997.
- 10. G Rich et.al, Hazardous, --Waste Management Technology, Podvan Publishers, 1987.

Unit Test –

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

ELECTIVE-I: JIG FIXTURE AND DIE DESIGN (Course Code C402.3)

Designation of Course	JIG FIXTURE AND DIE DESIGN		
Teaching Scheme:	End Semester Examination		Credits Allotted
Theory: - 03 Hours/ Week	Internal Assessment	60 Marks	03
Tutorial:Hours/ Week	Term Work	40 Marks	05
Practical: - 02 Hours/ Week	Oral/Practical	25 Mark	01
	Total	125 Marks	04

	The student should have.
Course	1. Basic knowledge of conventional and non-conventional manufacturing
Prerequisites: -	processes.
1 Terequisites	2. Knowledge of casting processes.
	3. Knowledge plastic processes methods
Course	1. To design jigs.
	2. To design fixtures.
Objectives: -	3. To design dies for manufacturing system.
	The students should be able to-
	1. To understand the concept of jigs and fixture and its principles.
	2. To design jigs with use of standard components.
Course	3. To design fixture with use of standard components.
Outcomes: -	4. To select plastic processes methods.
	5. To understand the concept of injection moulding and able to design the
	injection molding die.
	6. To design dies for the pressure die casting.

Course Contents

Unit I	Fundamentals of Jigs and Fixtures	(6 Hrs.)
Significance	e and purpose of jigs and fixtures and their functions in manufacturing	processes.
Classificatio	ons of Jigs and Fixtures. Design features of main elements of Jigs and Fix	xtures such
as locating,	clamping and guiding elements and their integrations. Indexing, le	ocking and
auxiliary ele	ements. Bodies and bases or frames of Jigs and fixtures. Economics of	of Jigs and
fixtures, Pne	eumatics & Hydraulics for Jig & Fixtures.	
Unit II	Design of Jigs	(6 Hrs.)
General gui	delines & procedures for design of Jigs. Design & selection of standard	l elements,
Analysis of	clamping force required & their magnitude, Design of drilling jigs.	
Unit III	Design of Fixtures	(6 Hrs.)
General gui	idelines & procedures for design of fixtures. Design & selection of	of standard
elements, A	nalysis of clamping force required & their magnitude, concept of modu	lar fixtures
& tool prese	tting fixtures. Design of milling, turning fixture and fixture for assembly	. Economic
analysis.		
Unit IV	Plastics Processing	(6 Hrs.)
Materials us	ed for plastic processing, Compression, transfer, injection & blow moul	ding
processes - i	its working, construction, types & advantages and limitations.	
Unit V	Design of Injection Molds	(6 Hrs.)
Specificatio	ns and elements of injection molding machine, Injection molding fea	ed system:
runner and gates, ejection methods, ejection force calculation, parting surface selection, cooling		
systems, De	fects & remedies.	_

Unit VI	Design of Die Castings Dies	(6 Hrs.)
Die casting	machines-Hot & cold chamber, metals for die casting, die locking	g methods,
interlocks &	safety devices, specific details of die constructions, casting, ejection, co	ores, slides,
loose die pi	eces, types of cores, directional solidification, types of feeders, die ven	ting, water
cooling, cla	ssification of dies- single, combination, multi impression. General de	tails of die
design, Gati	ng system, inserted impressions, die casting defects and remedies, die lu	brication &
rules for die	lubrication.	

Term Work: (Any Eight)

- 1. Design & working drawing of simple blanking die.
- 2. Design & working drawing of progressive die.
- 3. Design & working drawing of compound die.
- 4. Design & working drawing of combination die.
- 5. Design & working drawing of a deep drawing die.
- 6. Injection molding process.
- 7. Injection Mold Design
- 8. Blow Molding process.
- 9. Hot & cold chamber die casting.
- 10. Design gating system in die casting.
- 11. A report on factory visit, comprising of product range, processes, plant layout, Auxillary equipment, process parameters etc.

Project Based Learning:

Following is the list of topics for project-based learning (Not Limited to) based on the syllabus contents:

- 1. Fabrication of simple blanking die.
- 2. Automatic blanking Machine
- 3. Fabrication of progressive die.
- 4. Fabrication of compound die.
- 5. Automatic Pneumatic Punching Machine
- 6. Tool and die design for Progressive tools.
- 7. Tool and die design for trimming tools.
- 8. Pneumatic drill jig
- 9. Fabrication of combination die.
- 10. Fabrication of a deep drawing die.
- 11. Tool and die design for Blanking.
- 12. Fabrication of Sandwich Jig.
- 13. Fabrication of universal Fixture
- 14. Indexing drill jig by using bevel Gear
- 15. Fabrication of Injection mold.
- 16. Fabrication of Blow Mold.
- 17. Automatic Multi spindle drilling machine

Textbooks:

- 1. P. N. Rao, "Manufacturing Technology", Tata McGraw Hill
- 2. M. H. A. Kempster, "Introduction to Jigs and Fixtures Design"
- 3. P. H. Joshi, "Press Tools", A.H. Wheeler
- 4. P. C. Sharma, "Production Engineering", S. Chand

Reference Books:

- 1. Donaldson, Lecain & Goold, "Tool Design", Tata McGrw Hill PRODUCTION
- 2. Doebler H. H., "Die Casting", McGraw Hill
- 3. "Tool Engineering Handbook", A. S. T. M. E.
- 4. Wilson, "Fundamentals of Tool Design", A. S. T. M. E.
- 5. Richard Kibbe, John E. Neely, Meyer, White, "Machine Tool Practices"

Unit Test -

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

Designation of Course	Artificial Intelligence	Artificial Intelligence		
Teaching Scheme	Examination Scheme		Credits Allotted	
Theory: - 3 hrs/Week	End Semester Examination	60	02	
Practical: - 2 Hrs /Week	Internal Assessment	40	03	
	Term Work	25	01	
	Total	125	04	

ELECTIVE-I: ARTIFICIAL INTELLIGENCE (Course Code C402.4)

Course Prerequisite: -	1. Engineering mathematics-III, Statistics and Numerical
	Methods, Sensors Technology
Course Objective: -	To provide Knowledge about
	1. To understand the artificial intelligence algorithms to
	robotics problems.
	2. To understand the performance of AI algorithms
	3. To compute the complex problems in flexible automation
Course Outcomes: -	On completion of the course, students will be able to
	1. Use different machine learning techniques.
	2. Apply basic principles of AI in solutions that require problem
	solving, inference, perception, knowledge representation and
	learning.
	4. Demonstrate awareness and a fundamental understanding of AI
	techniques in intelligent agents, artificial neural networks.
	5. Demonstrate proficiency in developing applications in AI and
	Machine Learning.
	6. Demonstrate an ability to share in discussions of AI, its current scope
	and limitations, and societal implications.

Course Content

Unit I	Introduction to artificial intelligence techniques	(06 Hrs)	
Evolutionary	computation, Goals of AI in manufacturing, tools for AI such as Search	h algorithm,	
Mathematica	l optimization, programming in AI environment, developing artificial	intelligence	
system, natur	al language processing.		
Unit II	Introduction to fuzzy logic	(06 Hrs)	
Basic concep	ts in fuzzy set theory, operations of fuzzy sets, fuzzy relational fuzzy logi	c principles,	
fuzzy inferen	ce, fuzzy rule-based systems, Fuzzy logic controllers, fuzzy decision mak	king, various	
industrial app	blications of fuzzy logic control.		
Unit III	Introduction to artificial neural networks	(06 Hrs)	
Fundamental	s of neural networks, neural network architectures, Neural Learning,	Supervised	
Learning, U	Learning, Unsupervised Learning, taxonomy of neural network architectures, standard back		
propagation a	algorithms.		
Unit IV	Handling uncertainty	(06 Hrs)	
Probabilistic methods for uncertain reasoning such as Bayesian network, Hidden Markov model,			
Kalman filter, Decision theory and Utility theory, statistical learning methods, support vector			
machines, ex	pert systems.		

Unit V	Intelligent systems	(06 Hrs)		
Robotic visio	Robotic vision systems, image processing techniques, application to object recognition and			
inspection, a	inspection, automatic speech recognition, Path Planning Robot Control in Dynamic Environments,			
Accurate Mo	Accurate Motion Control of Fast Mobile Robots.			
Unit VI	Industrial application of AI and expert systems	(06 Hrs)		
Recent advan	Recent advances: Fundamentals of genetic algorithms, hybrid systems, meta heuristic techniques			
like simulated annealing, tabu search, ant colony optimization, artificial immune systems,				
applications	in design and manufacturing.			

List of Practical /Term work: -

Term work shall consist of programs listed below based on syllabus

- 1. Fuzzy logic sets.
- 2. Fuzzy logic relation.
- 3. A* algorithm.
- 4. AO* algorithm.
- 5. Searching algorithms.
- 6. Min/MAX search procedure for game Playing.
- 7. Variants of Min/ Max search procedure.
- 8. Implementation of mini-Project using the concepts studied in the AI course.

Project based learning:-

Following is the list of topic for project based learning (Not Limited to) based on the syllabus contents:

Create a demo model/ chart/ Working Block diagram for any application of the following topics using any programing language:

- 1. Search algorithm
- 2. Fuzzy set theory
- 3. Fuzzy decision making
- 4. Neural Learning
- 5. Supervised Learning,
- 6. Unsupervised Learning
- 7. Robotic vision systems
- 8. Path Planning Robot Control
- 9. Genetic algorithms

Text Book:-

- 1. Luger " Artificial Intelligence", Edition 5, Pearson, 2008
- Bhattacharya S., Artificial Intelligence, Laxmi Publications, Ltd., 2008, ISBN: 9788131804896
- 3. Chopra Rajiv, Artificial Intelligence, S. Chand Publishing, 2012, ISBN 9788121939485
- 4. Pawar P. J., Evolutionary Computations for Manufacturing, Studium Press, 2019, ISBN: 978-93-85046-52-0

5. Jain N, Artificial Intelligence: making a system intelligent, 2018, ISBN: 9788126579945 **Reference Book:-**

1. Russell, Stuart and Norvig, Peter, Artificial Intelligence: A Modern Approach" Prentice Hall, 2003.

2. Aleksander, Igor and Burnett, Piers, Thinking Machines Oxford, 1987.

3. Bench-Capon, T. J. M., Knowledge Representation: An approach to artificial intelligence Academic Press, 1990.

4. Genesereth, Michael R. and Nilsson, Nils J, Logical Foundations of Artificial Intelligence Morgan Kaufmann,1987.

2. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition)

3. Vinod Chandra S.S., Anand Hareendran S, "Artificial Intelligence And Machine Learning"

4. Luger "Artificial Intelligence", Edition 5, Pearson, 2008

5. Jacek M. Zurada, Introduction to Artificial Neural Systems, PWS Publishing Company, 1995.

6. Simon Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing

Company, 1994.

Unit Test:

Unit Test 1	Unit I, II, III
Unit Test 2	Unit IV, V, VI

ELECTIVE-I: PRINCIPLES OF AIRCRAFT & SUBMARINE DESIGN (Course No.C402.5)

Designation of Course	Principles of Aircraft & Submarine Design			
Teaching Scheme:Examination Scheme:		Credits Allotted		
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	- 03	
Tutorial:Hours/ Week	Internal Assessment	40 Marks	05	
Practical:- 02 Hours/ Week	Term Work	25 Marks	01	
	Oral/Practical	Marks	01	
	Total	125 Marks	04	

Course	The students should have knowledge of	
Prerequisites: -	1. Theory of Machine	
	2. Machine Design and Analysis-I and II	
Course Objectives:-	1. To make the student understand the choice of the selection of design parameters, Fixing the geometry and to investigate the performance and stability characteristics of airplanes.	
	2. To make the student understand the basic concepts of submarine design, various systems in submarine, dynamics and control of submarine.	
Course Outcomes: -	The students should be able to-	
	1. Initiate the preliminary design of an aircraft starting from data collection	
	to satisfy mission specifications.	
	2. Understand the estimation of geometric and design parameters of an airplane.	
	3. Understand the design of a system, component, or process to meet requirements for aircraft systems.	
	4. Understand the concepts of submarine design and development process.	
	5. Understand the various system used in the submarine.	
	6. Understand the dynamics and control system of submarine.	

Course Contents

Unit I	Introduction to Aircraft Design	(06 Hrs.)		
State of a	State of art in airplane design, Purpose and scope of airplane design, Classification of airplanes			
based on	purpose and configuration. Factors affecting configuration, Merits of diff	erent plane		
layouts. S	Stages in Airplane design. Designing for manufacturability, Maintenance,	Operational		
costs, Inte	practive designs.			
Unit II	Preliminary Design Procedure	(06 Hrs.)		
Data colle	ection and 3-view drawings, their purpose, weight estimation, Weight equatio	n method –		
Developm	nent & procedures for evaluation of component weights. Weight fractions	for various		
segments	of mission. Choice of wind loading and thrust. Loading.			
Unit III	Design of Wing, Fuselage and Emphanage	(06 Hrs.)		
Selection	of aero foil. Selection of Wing parameters, selection of sweep, Effect of A	spect ratio,		
Wing Design and Airworthiness requirements, V-n diagram, loads, Structural features. Elements of				
fuselage design, Loads on fuselage, Fuselage Design. Fuselage and tail sizing. Determination of tail				
surface ar	eas, Tail design, Structural features, check for nose wheel lift off.			
Unit IV	Introduction to Submarine Design	(06 Hrs.)		
Introduction, Design Objectives, Design Progression, Basic principles of submarine design in a				
complex modern multi-platform system. Operational requirements for submarines, Architecture and				
technologies can deliver the capability. Submarine design and development process and all its				
phases, the platform and combat systems, pressure hull design considerations, Balancing of a				
submarine	submarine design (e.g., weight and buoyancy relations, overall submarine performance,).			

Unit V	Submarine Systems
--------	-------------------

(06 Hrs.)

Introduction, Hydraulic system, High Pressure Air systems, water systems, System for hydrostatic Control, Environmental control system, Provision for escape, Electrical System.

(06 Hrs.)

Introduction, Some Basic Concept, Operational Requirement, Equation of motion of a submarine, Hydrodynamic derivatives, Stability, and control in the horizontal and vertical plane, Steering and depth control system, Impact on design.

Term Work

Any four case studies from the following:

- 1. Aircraft Conceptual Design Practices & Case Studies
- 2. Study of brake systems of various aircraft.
- 3. Study of pneumatic systems of various aircraft.
- 4. Study of hydraulic systems of various aircraft.
- 5. Case study on: Submarine Design in a Changing World.
- 6. The Submarine as a Case Study in Transformation: Implications for Future Investment
- 7. Understanding Structure Design of a Submarine.

Project Based Learning

Any One from the following:

- 1. One design project on various components of aircraft.
- 2. One design project on various component of submarine.
- 3. CAD detailed drawing of any one component of aircraft.
- 4. CAD detailed drawing of any one component of submarine.
- 5. Detailed drawing of a submarine system using any CAD software.

Textbooks

- 1. Raymer, D.P. Aircraft conceptual Design, AIAA series, 5th edition, 2012.
- 2. Torenbeck, E. Synthesis of Subsonic Airplane Design, Delft University Press, U.K. 1986.

Reference Books

- 1. Kuechemann, D, The Aerodynamic Design of Aircraft, American Institute of Aeronautics publishers, 2012
- 2. Harrington, R. L. (1992). Marine Engineering (Revised, Subsequent ed.). Revised, Penyunt.) Jersey City, United States: *The Society of Naval Architects and Marine Engineers*.
- 3. Burcher, R., & Rydill, L. J. (1995). Concepts in submarine design (Vol. 2). Cambridge university press.

Unit Tests

Unit Test-I	Unit- I,II, III
Unit Test-II	Unit- IV, V, VI

PRODUCTION PLANNING AND CONTROL

Designation of Course	Production Planning and Control		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory: - 04 Hours/ Week	End Semester Examination	60 Marks	04
Tutorial:Hours/ Week	Internal Assessment	40 Marks	04
Practical: Hours/ Week	Term Work	Marks	
	Total	100 Marks	04

(Course Code C403)

The student should have			
Course	1. Basic knowledge of Industrial Engineering & Management.		
Prerequisites:-	2. Basic knowledge of statistics.		
	3. Basic knowledge of resources of production Man, Machine Material.		
The student should			
	1. To acquire the knowledge of scope, objective and application of		
Course	Production Planning and Control manufacturing Industries.		
Objectives: -	2. To acquire knowledge of forecasting, material planning and purchasing.		
	3. To acquire the knowledge of Inventory control and recent trends in		
	PPC.		
	The students should be able to-		
	1. Understand the importance of PPC in industry.		
	2. Understand the different techniques of forecasting and apply them in		
Course	sales forecasting.		
Outcomes:-	3. Understand different ideas and concept to improve PPC in industry.		
	4. Understand different techniques for material requirement planning.		
	5. Understand different techniques used for PPC in industry.		
	6. Understand Recent trends in PPC.		

Course Contents

Unit I	Introduction	(8 Hrs.)		
Definition, Objectives of PPC, Functions of PPC, PPC Department Organization, Coordination of				
PPC with othe	er Departments. Types of Manufacturing systems-intermittent system and	continuous		
system. Produ	ect development and design-Factor determining the design of a product, Essent	tials of good		
design, Produc	t Life Cycle, Steps in new product design and development, Effect of competition	n on design,		
Product Analys	sis, Tools for product development.			
Unit II	Forecasting and Capacity planning	(8 Hrs.)		
Forecasting- I	ntroduction, Needs of Sales forecasting, Forecasting Methods, Statistical n	nethods for		
making a fore	making a forecast-Moving average method, Exponential smoothing, Regression analysis.			
Capacity planning-concept of capacity, measurement of capacity measures of capacity, factor				
influencing effective capacity, capacity planning procedure. Aggregate planning.				
Unit III	Planning Materials and Purchasing	(8 Hrs.)		
Scope and requirement of MRP, MRP I and MRP II, Master Production Schedule, Bill of Materials,				
Capacity Requirement Planning. Purchasing - Documentation, Make or Buy decisions, Vendor				
Development	Development.			

Unit IV	Techniques And Production Control	(8 Hrs.)	
Process planning, route sheet, factor influencing process planning. Line Balancing-Heuristic			
Method, Ran	k Position Weightage Method. Scheduling-procedure of scheduling,	scheduling	
devices, Gant	t Chart, loading devices, Machine Loading Chart, Scheduling and loading t	techniques,	
Sequencing o	f operations - Johnson's rule, Loading, Dispatching, Follow- up, Evaluati	ion, PERT,	
CPM			
Unit VInventory Control and Store control(8 Hrs.)			
Unit V	Inventory Control and Store control	(8 Hrs.)	
	Inventory Control and Store control efinition, characteristics, objectives, Limitations and Types of Inventor	· · · ·	
Inventory- D		ories. Cost	
Inventory- D associated wit	efinition, characteristics, objectives, Limitations and Types of Inventor	ories. Cost	
Inventory- D associated wit control, Selec	efinition, characteristics, objectives, Limitations and Types of Inventor h Inventory, EOQ- basic model and production model. Quality standards o	ories. Cost f inventory	

Unit VI	Recent Trends in PPC
Introduction	to computer integrated production planning systems, Applications
production pl	anning and control, Enterprise Resource Planning (ERP), Automati

production planning and control, Enterprise Resource Planning (ERP), Automation of repetitive process, Customer Relationship Management (CRM), Advanced Planning and Scheduling (APS), MRP software, JIT- elements of Just in Time Systems, Kanban System, Kaizen Strategy.

(8 Hrs.) of computer in

Project Based Learning:

Following is the list of topics for project-based learning (Not Limited to) based on the syllabus contents:

- 1. Basic production control problem in automobile industry and best ways of solving them.
- 2. Impact of inventory management on productivity in an organization.
- 3. Impact of production planning and control in a manufacturing organization.
- 4. The effect of stock control profit maximization in manufacturing company.
- 5. The effect of material management technique on production planning processes.
- 6. The impact of production planning and control on productivity in the manufacturing industry.
- 7. Impact of quality control as an effective tool in product standardization.
- 8. An appraisal of material management concept as a strategy for achieving higher productivity.
- 9. The impact of production planning and control on operational cost of the manufacturing industry.
- 10. Minimizing defective product through effective production planning and control.
- 11. Effect of manpower planning on organization performance.
- 12. The impact of quality control technique on the profitability in manufacturing organizations.
- 13. An assessment of the impact of marketing segmentation on production planning in an organization.
- 14. An optimal inventory control of raw materials and network analysis of production planning.
- 15. Minimizing defective products through effective production planning and control in defence.

Textbooks:

- 1. "Production Systems Planning Analysis and Control", J. L. Riggs, ", Jhon Wiley& Sons.
- 2. "Industrial Engineering and Production and Operations Management" Sanjay.S.Patil, Nandakumar K. Hukeri, Electrotech Publication.
- 3. "Production and Operation Management", S N Charry " Tata McGraw Hill
- 4. "Production Planning And Inventory Control" Mager and Boodman
- 5. "Production Planning and Control, A. K. Bewoor", Satya Publication

6. "Production Planning and Cost Control Jain and Arrawal", Khanna Publisher

Reference Books

- 1. "Operations Management Design, Planning & Control for Manufacturing and Services", J.B. Dilworth ", McGraw Hill
- 2. "Production Management" Martin Star,
- 3. "Process Engineering" Erry Johnson
- 4. "Industrial Engineering and Production Management Mart and Telsang" S. Chand and Co. Ltd.
- 5. "Elements of PPC, Samuel Elion", Universal Book Company

Unit Test -

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

POWER PLANT TECHNOLOGY

(Course Code C404)

Designation of Course	Power Plant Technology		
Teaching Scheme	Examination Scheme		Credits Allotted
Theory: 03 Hours/ Week	End Semester Examination	60 Marks	04
Practical: - 02 Hours/ Week	Internal Assessment	40 Marks	04
Tutorial : 1 Hours/ Week	Term Work	25 Marks	01
	Total	125 Marks	05

Course	The student should have
Prerequisites:-	1. Mechanical Engineering System.
	2. Thermodynamic principals
	3. Thermodynamic Applications
Course	To explain the concepts of different types of Power Plants
Objectives:-	To study and analyze different types of Steam Condenser, Cooling Towers, Steam
	Nozzle and Steam Turbine.
Course	On completion of the course, students will be able to-
Outcomes:-	1. Understand fundamentals of Power Plants
	2. Understand Thermal Power Plant and Nuclear Power Plant and analysis
	their performance.
	3. Understand fundamentals of Thermal power plant and analysis their
	performance.
	4. Understand construction and working of Steam Condenser and Cooling
	Towers and analysis their performance.
	5. Understand construction and working of Steam Nozzle and Steam Turbine
	Plants and analysis their performance.
	6. Understand study fundamentals of Power Plant Economics.

Course Content

Unit NoIIntroduction to Power Plants :(8 Hrs)			
Introduction of steam, hydel, diesel, nuclear and gas turbine power plants, combined power cycles,			
comparison and selection, Power and energy, sources of energy, Indian Energy scenario,			
Conventional	Conventional & Non-Conventional sources of energy and their availability in India, Power Plants in		
India, Locatio	on of power plant. Issues in Power plants. Resources and developme	ent of power in	
India, NTPC,	NHPC and their role in Power development in India.		
Plant Safety a	and Maintenance: Operation and Maintenance procedures of power p	olants, Operator	
training, Safe	ty during selection of power plant equipment -safety in commission	ning of thermal	
1 1	quipments, hydrostatic and air leakage test, acid and alkali cleaning, sa	afety in	
auxiliary plan	ts. Cooling water system, Safety in maintenance of power plants.		
Unit NoII Thermal Power Plant and Nuclear Power Plant: (8 Hrs)			
Unit NoII	Thermal Power Plant and Nuclear Power Plant:	(8 Hrs)	
	er Plant - Role of thermal power plant in current power generation sce	~ /	
Thermal Pow		nario, Selection	
Thermal Pow site for therm	er Plant - Role of thermal power plant in current power generation sce	nario, Selection thermal power	
Thermal Pow site for therm plant- Fuel ha	er Plant - Role of thermal power plant in current power generation sce al power plant, General lay out of a thermal power plant, Fuels used in	nario, Selection thermal power burning-Stoker	
Thermal Pow site for therm plant- Fuel ha firing, Pulver	er Plant - Role of thermal power plant in current power generation scenal power plant, General lay out of a thermal power plant, Fuels used in andling layout and its methods, stages in coal handling storage, Fuel	nario, Selection a thermal power burning-Stoker Gravity system,	
Thermal Pow site for therm plant- Fuel ha firing, Pulver pneumatic or	er Plant - Role of thermal power plant in current power generation sce al power plant, General lay out of a thermal power plant, Fuels used in andling layout and its methods, stages in coal handling storage, Fuel ized fuel burning- Pulverization of coal, Ash handling system- C	nario, Selection a thermal power burning-Stoker Gravity system,	
Thermal Pow site for therm plant- Fuel ha firing, Pulver pneumatic or Mechanical, t	er Plant - Role of thermal power plant in current power generation scenal power plant, General lay out of a thermal power plant, Fuels used in andling layout and its methods, stages in coal handling storage, Fuel tized fuel burning- Pulverization of coal, Ash handling system- C vacuum system. Ash disposal management and its utilization, Feed w	nario, Selection a thermal power burning-Stoker Gravity system, vater treatment-	
Thermal Pow site for therm plant- Fuel ha firing, Pulver pneumatic or Mechanical, t Introduction,	er Plant - Role of thermal power plant in current power generation sce- al power plant, General lay out of a thermal power plant, Fuels used in andling layout and its methods, stages in coal handling storage, Fuel ized fuel burning- Pulverization of coal, Ash handling system- O vacuum system. Ash disposal management and its utilization, Feed w hermal methods.	nario, Selection a thermal power burning-Stoker Gravity system, vater treatment- , Working of a	

Unit NoIII	Thermodynamic Analysis:	(8 Hrs)
Review of the	rmodynamic cycles related to power plants - Rankine cycle, Rank	tine cycle with
reheat, Reheat factor, regeneration rankine cycle, Principal of regeneration, types of feed water		
heaters, Nume	rical based on different combinations.	
Unit NoIV	Steam Condenser and Cooling Towers:	(8 Hrs)
requirements, Types of cooli	eam condenser, elements of steam condensing plant, classification, condenser efficiency, vacuum efficiency (Numerical Treatment), ng towers, air leakage and its effects on condenser performance, air eatment for Air Pump capacity)	cooling towers,
	Steam Nozzle and Steam Turbine:	(8 Hrs)
General forms of nozzles Flow through steam nozzles, Velocity of steam leaving nozzle, mass of steam discharged, Critical Pressure ratio, Areas of throat and exit for maximum discharge, length of nozzle, efficiency of nozzle, effect of friction in nozzle. Working principle of steam turbine, classification, Simple impulse turbine, Compounding of Impulse turbine, Reaction turbine, Velocity diagram, Blade efficiency, Stage efficiency, Net efficiency, Comparison between Impulse and Reaction turbines, Losses in steam turbine, and Governing of steam turbine.		
Unit NoVI	Power Plant Economics	(8 Hrs)
Power Plant Economics - Cost of electric energy, fixed and operating costs, energy rates, types tariffs, economics of load sharing, Load Curves, Load duration Curves, types of load and their characteristics, performance and operational characteristics of power plants, comparison of various power plants, Energy, Economic and Environmental issues of Power plants.		

Term work:

- 1. Study of National & International Grid, Indian Electricity Grid Code
- 2. Study of combined cycle gas based and coal based Power plant.
- 3. To perform analysis of a thermal power plant.
- 4. To perform analysis of gas turbine/ diesel power system.
- 5. Study of Power plant Instrumentation.
- 6. Study of Heat Exchangers used in Power Plant
- 7. To study different types of hybrid power plants.
- 8. Visit to a thermal power plant / Hydro Electric Power Plants
- 9. Case Study on Plant Safety and Maintenance

Project Based Learning

Following is the list of Topics for project based learning (Not Limited to) based on the syllabus Contents:

- 1. To prepare a chart on National & International Grid, Indian Electricity Grid Code
- 2. To prepare a chart on Thermal Power Plant
- 3. To prepare a chart on Hydro Electric Power Plants
- 4. To prepare a chart on Steam Condenser and Cooling Towers
- 5. To prepare a chart on Steam Nozzle and Steam Turbine
- 6. To prepare a chart on Energy Storage Technologies
- 7. To prepare demonstration model of Thermal Power Plant
- 8. To prepare demonstration model of Hydro Electric Power Plants
- 9. To prepare demonstration model of Steam Condenser
- 10. To prepare demonstration model of Cooling Towers
- 11. To prepare demonstration model of Steam Nozzle
- 12. To prepare demonstration model of Steam Turbine

- 13. Case study on Thermal Power Plant
- 14. Case study on Hydro Electric Power Plants
- 15. Case study on Steam Nozzle and Steam Turbine

Text Books:

- 1. Modern Power Station Practice, Vol.6, Instrumentation, Controls and Testing, Pergamon Press, Oxford, 1971.
- 2. John V Grimaldi and Rollin H Simonds, Safety Management
- 3. M. M. El Wakil, Power Plant Technology Mc Graw Hill. Int. Edition.
- 4. Domkundwar and Arora, Power Plant Engineering, Dhanpatrai and Sons.

Reference Books

- 1. Grainger John J, and Stevenson Jr. W.D. Power System Analysis, McGraw Hill 1994
- 2. L. K. Kirchmeyer, Economic Operation of Power Systems, John Wiley and Sons, 1993.
- 3. C. A. Gross, Power System Analysis, John Wiley and Sons, Inc. 1986.
- 4. John Weisman & L.E. Eckart, Modern Power Engineering, Prentice Hall, 1985
- 5. A course on Power Plant Engineering Ramlingam SCITECH Publication
- 6. S. P. Sukhatme, Solar Energy, Tata McGraw Hill, 3rdEdition 1996.
- 7. G. D. Rai, Non-Conventional Energy Sources, Khanna Publishers, 2011
- 8. P. K. Nag, Power plant Engineering, TMH, 3rd Edition 2002

Unit Test –

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

MEASUREMENT AND METROLOGY TECHNIQUES (Course Code C405)

Designation of Course	Measurement and Metrology Techniques		chniques
Teaching Scheme:	Examination Schen	Examination Scheme:	
Practical: - 02 Hours/ Week	Term Work	25 Marks	01
	Oral	25 Marks	01
	Total	50 Marks	01

Course	Student should have knowledge of	
	1. Students should have Basic knowledge of Mechanical terms Force,	
Prerequisites: -	-	
	Pressure, Temperature, and Electronics terms like as Voltage,	
	Resistance and Current.	
	2. Students should have Basic knowledge of Measuring Units,	
	Mathematics, and Various Measurement terms.	
Course Objectives: -	Student should be able to	
	<i>1.</i> Use various precision measuring instruments <i>viz</i> . Vernier caliper,	
	micrometer <i>etc</i> .	
	2. Acquire knowledge of different sensors and transducers	
	3. Acquire knowledge of tolerances, gauges and measurement of	
	surface finish	
Course Outcomes: -	Learner will be able to	
	 Understand static and dynamic characteristics of measurement systems. 	
	2. Know different devices used for linear and angular measurement.	
	 Measure temperature, pressure, strain and fluid flow using different sensors for various applications. 	
	4. Using of concepts like limits, fits and tolerances for designing the limit gauges.	
	5. Use displacement, velocity, position, force, torque, level sensors	
	for specific applications.	
	6. Measure various screw thread or gear tooth parameters using	
	specific equipment.	

Course Contents

Term Work: (Any 8 experiments need perform during practical's)

1. Study & Calibration of Thermocouples (J & K-Type)/RTD(PT-100)

Thermocouples & Laws of thermocouples

- 2. Study & Calibration of Pressure Measurement, & Vacuum Measurement Diaphragm Pressure Gauge, Bourdon Tube, Bellows, McLeod Gauge
- 3. Measurement of Load/Force using Load Cells
- 4. Displacement & Angle measurement using LVDT & Encoder Sensor
- 5. Study of Different Switches & Relays
- 6. Measurement of the surface roughness.

Surface texture, Meaning of RMS and CLA values, grades of roughness.

7. Measurement of angle by sine bar/sine center.

Sine bar, Sine center, uses of sine bar, angle gauge, slip gauges.

8. Measurement of optical surface using Interferometer.

Introduction, flatness testing by interferometry, NPL flatness interferometer.

- Measurements of screw tread parameters using Floating Carriage Micrometer.
 External screw threads terminologies, floating carriage instruments, pitch and flank Measurement.
- Measurement of gear tooth thickness using gear tooth Vernier caliper and span micrometer

Spur gear parameters, gear tooth thickness measurement, gear tooth Vernier caliper.

12. Study and experiment on profile projector/Tool makers microscope

13. Industrial visit to Automation Company and Inspection & Quality control division of any Industry with detail report.

Text Books:

- 1. Ramchandran K. P., Vijyaraghavan G. K., Balasundaram M. S., "Mechatronics: Integrated Mechanical Electronic Systems", John Wiley & Sons, 2008.
- 2. Bolton W., "Mechatronics A Multidisciplinary approach", 4thEdition, Prentice Hall,2009.
- Kumar D. S., "Mechanical Measurement & Control", Metropolitan Book Co. Pvt. Ltd. New Delhi,2007
- 4. Singh M. D. and Joshi J. G., "Mechatronics", 3rd Edition, Prentice Hall, New Delhi, 2009.
- 5. Beckwith T. G., Marangoni R. D., Lienhard J. H., "Mechanical Engineering Measurements", Pearson Prentice Hall, 2007
- 6. Jain R. K., "Engineering Metrology", Khanna Publishers
- 7. Hume K. J., "Engineering Metrology", Macdonald, 1950
- 8. Sharp K. W. B., "Practical Engineering Metrology", Pitman Publication, 1970.

Reference Book:

- 1. Doebelin Ernesto, "Measurement Systems", McGraw Hill International Publication Co. New York, 4th Edition,1990.
- 2. Sawhney A. K. and Sawhney P., "Mechanical Measurement and Control", Dhanpat Rai and Company Pvt. Ltd., New Delhi, 12th Edition, 2010.
- 4. Figliola R. S., Beasley D. E., "Theory and design for mechanical measurements", Wiley India Edition.
- Alciatore & Histand, "Introduction to Mechatronics and Measurement System", 4th Edition, Mc-Graw Hill publication, 2011.
- 6. Bishop (Editor), "Mechatronics An Introduction", CRC Press, 2006.

Unit Test -

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

MACHINE LEARNING (Course Code C406)

Designation of Course	Machine Learning		
Teaching Scheme	Examination Scheme		Credits Allotted
Theory: - 00 hrs/Week	Term Work	25	01
	Oral	25	- 01
Practical: - 02 Hrs /Week	Total	50	

Course	1. Engineering mathematics-III, Statistics and Numerical	
Prerequisite: -	Methods, Introduction to Data Science.	
Course Objective: -	To provide Knowledge about	
	1. To understand the difference of supervised and unsupervised	
	learning.	
	2. Apply the knowledge of linear regression for different applications.	
	3. To understand the knowledge of deep learning.	
Course Outcomes:-	On completion of the course, students will be able to	
	1. Understand the different machine learning techniques.	
	2. Apply the knowledge of probability for uncertain methods.	
	3. Understand the concept of various processes in machine learning.	
	4. Apply the knowledge of linear regression process.	
	5. Apply the knowledge of Multiple linear regression process.	
	6. Apply the knowledge of clustering method.	

Course Content

List of Practical /Term work: - (Any 6 of the following list)

- 1. Study and practice of Linear regression system.
 - ML Techniques overview, Validation Techniques.
- 2. Study and practice of logistics regression system
 - Regression basics: Relationship between attributes using Covariance.
- 3. Study and practice or regularization technics.
 - ML: Supervised learning, Unsupervised learning, Reinforcement learning
- 4. Study and practice of KNN systems.
 - K-Nearest Neighbor algorithm
 - Study and practice of decision tree.
 - Wilson editing and triangulations or Decision Trees
- 6. Study and practice of random forest.
 - Classification & Regression of random forest.
- 7. Study and practice of K-mean clustering.
 - K-Medoids, k-Mode and density-based clustering.
- 8. Study and practice of Natural Language Programing.
- 9. Study and practice of deep learning process.
 - Introduce popular architectures, models, and the use of it in various settings.
- 10. Implementation of mini-Project or case study using the concepts studied in the ML course.

5.

Text Book

- 1. Bhattacharya S., Artificial Intelligence, Laxmi Publications, Ltd., 2008, ISBN: 9788131804896
- 2. Chopra Rajiv, Artificial Intelligence, S. Chand Publishing, 2012, ISBN 9788121939485
- Pawar P. J., Evolutionary Computations for Manufacturing, Studium Press, 2019, ISBN: 978-93-85046-52-0
- 4. Jain N, Artificial Intelligence: making a system intelligent, 2018, ISBN: 978812657994

References Books:

- Zsolt Nagy, "Artificial Intelligence and Machine Learning Fundamentals", Packt Publishing, 2018, ISBN: 978-1-78980-165-1
- 2. Hastie, Trevor, Robert Tibshirani, Jerome H. Friedman, and Jerome H. Friedman. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. New York: springer, 2009.
- 3. Zaki, Mohammed J., Wagner Meira Jr, and Wagner Meira. Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press, 2014.
- 4. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021

PROJECT STAGE -I (Course Code C407)

Designation of Course	Proje	Project Stage -I		
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory: - 02 Hours/ Week	End Semester Examination	Marks		
Tutorial:Hours/ Week	Internal Assessment	Marks		
Practical: Hours/ Week	Term Work	erm Work 50 Marks 03		
	Oral/Practical	50 Marks	05	
	Total	100 Marks	03	

Course	The students should have knowledge of
Prerequisites: -	1. Knowledge of Mathematics & Science
	2. Knowledge of basic concepts in heat transfer.
	3. Basic information of thermodynamics.
	4. Basic knowledge of design
	5. Knowledge of basic concepts in mechanical engineering.
Course Objectives: -	1. To identify problem for a specific need of an organization
	2. To review literature on specific research topic
	3. To make feasible, sustainable design
	4. To work sincerely as a member of a team
	5. To communicate ideas to supervisors as well as subordinates
	6. To develop new equipment or make modifications in existing one
Course Outcomes: -	The students should be able to-

Course Contents

Details of Project Stage -I

- 1. The formation of a project team with members having similar interest.
- 2. Discuss the ideas within the team members and choosing a faculty member interested in similar activity with the consent of the HOD. The projects can be on new equipment development, on industry sponsored problems or on research-oriented subjects.
- 3. Discuss the project with the faculty with the idea that projects selected are suitable for design and fabrication with the available resources.
- 4. First stage presentation with
 - Project Aim
 - Feasible design and alternatives considered.
 - Estimation of approximate cost of the project
 - Activities bar chart
 - Internal Lab resources required.
 - External resources required and their availability.
- 5. Second presentation with
 - Collection of reference material and
 - Design of the equipment with working drawings
 - Stage of work completed through activities bar chart.
- 6. Third presentation of complete work with suggested modifications.

INTERNSHIP (Course Code C408)

Designation of Course	In	Internship		
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory: Hours/ Week	End Semester Examination	Marks		
Tutorial:Hours/ Week	Internal Assessment	Marks		
Practical: Hours/ Week	Term Work	25 Marks	larks 03	
	Oral/Practical	25 Marks	- 03	
	Total	50 Marks	03	

Course	The students should have knowledge of
	C C
Prerequisites: -	1. All courses up to B. Tech Semester VI.
Course Objectives: -	1. To expose technical student to the industrial environment.
	2. To provide possible opportunities to learn, understand, and sharpen the
	real time technical, managerial skills required at the job.
	3. To familiarize with various materials, processes, products and their
	applications along with relevant aspects of quality control.
	4. To acquaint the social, economic, and administrative considerations
	that influence the working environment of industrial organization.
Course Outcomes: -	The students should be able to-
	1. Understand the latest changes in technological world and apply
	fundamental principles of science and engineering.
	2. Create ability to identify, formulate and model problems and apply it
	to find engineering solutions based on a system approach.
	3. Understand importance of sustainability and cost-effectiveness in
	design and development of engineering solution.
	4. Create ability to be multi skilled engineer with a good technical
	knowledge, management, leadership, entrepreneurship skills.
	5. Create awareness of social, cultural, global, and environmental
	responsibility as an engineer.
	6. Create ability to communicate efficiently.

Course Contents

Introduction:

Internships are educational and career development opportunities, providing practical experience in a field or discipline. Internships are far more important as the employers are looking for employees who are properly skilled and having awareness about industry environment, practices, and culture. Internship is structured, short-term, supervised training often focused on tasks or projects with defined time scales. Core objective is to expose technical students to the industrial environment, which cannot be simulated/experienced in the classroom and hence creating competent professionals in the industry and to understand the social, economic and administrative considerations that influence the working environment of industrial organizations. Engineering internships are intended to provide students with an opportunity to apply theoretical knowledge from academics to the realities of the field work/training.

Duration:

Internship to be completed after semester 6 and before commencement of semester 7 of at least 8 weeks (60 Days); and it is to be assessed and evaluated in semester 7.

Internship work Identification:

Student may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/NGO's/Government organizations/Micro/Small/Medium enterprises to make themselves ready for the industry.

Contacting various companies for Internship and Internship work identification process should be initiated in the 6th semester in coordination with training and placement cell/ industry institute cell/ internship cell. This will help students to start their internship work on time. Also, it will allow students to work in vacation period after their 6th semester examination. Student can take internship work in the form of Online/onsite work from any of the following but not limited to:

- Working for consultancy/ research project,
- Participation at Events (Technical / Business)/in innovation related completions like Hackathon,
- Contribution in Incubation/ Innovation/ Entrepreneurship Cell/ Institutional Innovation Council/ startups cells of institute
- Development of new product/ Business Plan/ registration of start-up,
- Participation in IPR workshop/Leadership Talks/ Idea/ Design/ Innovation/ Business Completion/ Technical Expos,
- Industry / Government Organization Internship, Internship through Internshala,
- In-house product development, intercollegiate, inter department research internship under research lab/group,
- micro/small/medium enterprise/online internship.

[1] <u>https://www.aicte-india.org/sites/default/files/AICTE%20Internship%20Policy.pdf</u>

Internship Diary/ Internship Workbook:

Students must maintain Internship Diary/ Internship Workbook. The main purpose of maintaining diary/workbook is to cultivate the habit of documenting. The students should record in the daily training diary the day-to-day account of the observations, impressions, information gathered, and suggestions given, if any. The training diary/workbook should be signed after every day by the supervisor/ in-charge of the section where the student has been working. Internship Diary/workbook and Internship Report should be submitted by the students along with attendance record and an evaluation sheet duly signed and stamped by the industry to the Institute immediately after the completion of the training.

Internship Diary/workbook may be evaluated based on the following criteria:

• Proper and timely documented entries • Adequacy & quality of information recorded. • Data recorded. • Thought process and recording techniques used. • Organization of the information

Internship Work Evaluation:

The evaluation of these activities will be done by Cell In-charge/faculty mentor or Industry Supervisor based on Overall compilation of internship activities, evidence needed to assign the points and the duration for certain activities. Assessment and Evaluation is to be done in consultation with internship supervisor (Internal and External – a supervisor from place of internship.

Recommended evaluation parameters-Post Internship Internal Evaluation -25 Marks + Internship Diary/Workbook and Internship Report - 25 Marks

Evaluation through Seminar Presentation/Viva-Voce at the Institute

The student will give a seminar based on his training report, before an expert committee constituted by the concerned department as per norms of the institute. The evaluation will be based on the following criteria:

• Depth of knowledge and skills Communication & Presentation Skills • Teamwork • Creativity • Planning & Organizational skills • Adaptability • Analytical Skills • Attitude & Behavior at work • Societal Understanding • Ethics • Regularity and punctuality • Attendance record • Logbook • Student's Feedback from External Internship Supervisor.

After completion of Internship, the student should prepare a comprehensive report to indicate what he/she has observed and learnt in the training period. The student may contact Industrial Supervisor/

Faculty Mentor for assigning special topics and problems and should prepare the final report on the student's presence physically, if the student is found absent without prior intimation to the department/institute/concern authority, entire training can be cancelled.

The report shall be presented covering following recommended fields but not limited to,

• Title/Cover Page • Internship completion certificate • Internship Place Details- Company background-organization and activities/Scope and object of the study / personal observations • Index/Table of Contents • Introduction • Title/Problem statement/objectives • Motivation/Scope and rationale of the study • Methodological details • Results / Analysis /inferences and conclusion • Suggestions / Recommendations for improvement to industry, if any • Attendance Record • Acknowledgement • List of reference (Library books, magazines and other sources)

Feedback from internship supervisor (External and Internal)

Post internship, faculty coordinator should collect feedback about student with following recommended parameters: Technical knowledge, Discipline, Punctuality, Commitment, Willingness to do the work, Communication skill, individual work, Teamwork, Leadership, etc.

RENEWABLE ENERGY TECHNOLOGIES

Designation of Course	Renewable Energy Technologies		
Teaching Scheme :	Examination Scheme		Credits Allotted
Theory: 03 Hours/ Week	End Semester Examination	60 Marks	03
Tutorial: Hours/ Week	Internal Assessment	40 Marks	03
Practical: - 02 Hours/ Week	Term Work	25 Marks	- 01
	Oral/Practical	Marks	01
	Total	125 Marks	04

Camaga			
Course	The students should have knowledge of		
Prerequisites:-	1. Mechanical Engineering System.		
	2. Thermodynamic principals		
	3. Thermodynamic Applications		
	4. Power Plant Technology		
Course	1. To explain the concepts of Non-renewable energy systems		
Objectives:-	2. To outline utilization of renewable energy sources for both domestic and		
	industrial applications		
	3. To analyze the environmental and cost economics of renewable energy		
	sources in comparison with fossil fuels.		
Course	On completion of the course, students will be able to-		
Outcomes:-	1. Understand Fundamentals of Solar Energy.		
	2. Understand construction working of solar power system and analysis their		
	performance.		
	3. Understand Wind Energy Technology and analysis their performance.		
	4. Understand fundamentals of Biogas and Biomass Energy and analysis their		
	performance.		
	5. Understand different Renewable Technologies and analysis their		
	performance.		
	6. Understand construction and working Energy Storage Technologies		

Unit I	Fundamentals of Solar Energy:	(06Hrs.)	
Principle	Principle of conversion of solar radiation into heat, Applications of solar energy, Collectors used		
for solar	thermal conversion: Flat plate collectors and Concentrating collector	s, Collection	
efficiency	efficiency, Solar Thermal Power Plant, Solar Pond, Solar cookers, Solar hot water systems, Solar		
dryers, So	dryers, Solar Distillation, Solar greenhouses.		
Unit II	Solar Energy Technology :	(06 Hrs.)	
Conversion of Solar energy into Electricity - Photovoltaic Effect, Solar photovoltaic cell and its			
working principle, Different types of Solar cells, Series and parallel connections, Photovoltaic			
applications: Battery chargers, domestic lighting, street lighting and water pumping			

Power from wind, site selection, characteristics of the wind, wind energy conversion systems and			
their classification, construction and working of typical wind mill, design considerations for wind			
mills, small wind turbines, performance, blade element theory, social and environmental			
considerations, present status.			
Unit IVBio-Energy Technology:(06 Hrs.)			
Importance of biogas technology, Different Types of Biogas Plants. Aerobic and anaerobic			

erobic bioconversion processes, various substrates used to produce Biogas, Individual and community biogas operated engines and their use. Removal of CO2 and H2O, Application of Biogas in domestic, industry and vehicles. Bio-hydrogen production. Isolation of methane from Biogas and packing and its utilization.

Biomass Energy: Introduction, Photosynthesis Process, Biofuels; Biomass Resources, Biomass conversion technologies -fixed dome, Urban waste to energy conversion, Biomass gasification.

Unit V **Other Renewable Technologies:**

Ocean Thermal Energy Conversion: Introduction, Working principle, Resource and site requirements, Location of OTEC system, Electricity generation methods from OTEC, open cycle and closed cycle OTEC systems, Advantages and disadvantages, Applications of OTEC.

Tidal Energy - Introduction, Origin and nature of tidal energy, Basic principle of tidal power generation, Components of tidal power plants, Tidal energy technology, Tidal range power, Basic modes of operation of tidal systems. Advantages and limitations

Introduction to Hydroelectric power plant, Introduction- types - system components of Small Hydro Power Systems, discharge curve and estimation of power potential - Turbines for SHP.

Unit VI	Energy Storage Technologies :	(06 Hrs.)
Pumped	Hydroelectric Storage, Compressed Air Energy Storage, Battery Ter	chnologies -
Traditiona	al and Advanced, Flow Batteries, Flywheels, Fuel cell: Principle of wor	king- various
types –	construction and applications. Energy Storage System- Hybrid Energy	rgy Systems.
Supercon	ducting Magnetic Energy Storage, Super-capacitors/Ultra-capacitors, En	ergy Storage
Technolo	gy Comparisons, Functional Comparison, Cost Comparison, latest Energy	Storage
Technolo	gies	

Term Work

- 1. Study of national and global renewable energy scenario.
- 2. To perform analysis of solar power system.
- 3. Case Studies on solar power system.
- 4. To perform analysis of Wind power system.
- 5. Determination of characteristics of a wind generator.
- 6. Performance evaluation of vertical and horizontal axes wind turbine rotors.
- 7. Measurement of I-V characteristics of solar cell.
- 8. Study the effect of input light intensity on the performance of solar cell.
- 9. Study of Energy Storage Technologies

Unit III Wind Energy Technology:

(06 Hrs.)

(06 Hrs.)

- 10. Study of Biogas/ Biomass Plant
- 11. Study of Tidal Power/ Ocean power plant
- 12. Visit to Wind Power/ Solar Power Plant.
- 13. Visit to Biogas Plant

Project Based Learning

Following is the list of Topics for project based learning (Not Limited to) based on the syllabus Contents:

- 1. To prepare demonstration model of Solar Power System
- 2. To prepare demonstration model of Small Hydro Power Systems
- 3. To prepare demonstration model of Wind power system
- 4. To prepare demonstration model of Biomass Energy system
- 5. To prepare demonstration model of Biogas system
- 6. To prepare demonstration model of Fuel cell system
- 7. To prepare demonstration model of Energy Storage Technologies
- 8. Case study on Small Hydro Power Systems
- 9. Case study on Solar Power System
- 10. Case study on Wind power system
- 11. Case study on Biomass Energy
- 12. Case study on Biogas system
- 13. Case study on Fuel cell system
- 14. Case study on Ocean Thermal Energy
- 15. Case study on Tidal Energy

Text Books:

- 1. Felix A. Farret, M. Godoy Simoes, Integration of Alternative Sources of Energy, John Wileyand Sons, 2006.
- 2. Solanki: Renewable Energy Technologies: Practical Guide for Beginners, PHI Learning Pvt. Ltd., 2008.

Reference Books:

- 1. Solar Energy Principles, Thermal Collection & Storage, S. P. Sukhatme: Tata McGraw Hill Pub., New Delhi.
- 2. Non-Conventional Energy Resources by B.H. Khan, Tata McGraw Hill Pub., 2009.
- 3. Non-Conventional Energy Resources by Shobh Nath Singh, Pearson India., 2016.
- 4. Solar Cells: From Materials to Device Technology edited by S. K. Sharma, Khuram Ali, Springer (2020)
- 5. D. Mukherjee: Fundamentals of Renewable Energy Systems, New Age International publishers, 2007.
- 6. Remus Teodorescu, Marco Liserre, Pedro Rodriguez: Grid Converters for Photovoltaic and Wind Power Systems, John Wiley and Sons, 2011.
- 7. Gilbert M. Masters: Renewable and Efficient Electric Power Systems, John Wiley and Sons, 2004.
- 8. Non-Conventional Energy Sources, G. D. Rai, NewDelhi.

- 9. Renewable Energy, power for a sustainable future, Godfrey Boyle, 2004,
- 10. Non-Conventional Energy Resources by B.H. Khan, Tata McGraw Hill Pub., 2009.
- 11. Fundamentals of Renewable Energy Resources by G.N.Tiwari, M.K.Ghosal, Narosa Pub., 2007.
- 12. Rational Design of Solar Cells for Efficient Solar Energy Conversion edited by Alagarsa my Pandikumar, Ramasamy Ramaraj, Wiley (2018).
- 13. Energy fables, Edited by edited by Jenny Rinkinen, Elizabeth Shove, Jacopo Torriti, Routledge a T&F group, (2019).

Unit Test -

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

Elective-II: INDUSTRIAL PRODUCT DESIGN (Course Code C410.1)

Designation of Course	Industrial Product Design		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory:- 03 Hours/ Week	End Semester Examination	60 Marks	03
Practical: 02 Hours/ Week	Internal Evaluation	40 Marks	05
	Term Work:	25 Marks	01
	Total	125 Marks	04

Course Prerequisites:-	Student should have Basic Knowledge of	
	1. Machine Drawing I & II	
	2. Industrial Engineering & Management, Manufacturing Process,	
	Advanced Manufacturing Processes	
	3. CAD software viz. CATIA/ ProE/ SolidWorks/ Uni-Graphics	
Course Objectives:-	To study	
	1. Various aspects of product design and development different product	
	design methods.	
	2. Concept generation and product specification.	
	3. Industrial Design and Prototyping.	
	4. Aesthetic, Environment and Ergonomic considerations to develop an	
	industrial product.	
Course Outcomes:-	Students should be able to	
Course Outcomes		
	 Understand fundamental concept of industrial product design Understand and apply different product design methods 	
	3. Understand the concept generation and develop the product	
	specifications	
	4. Evaluate legal economic issues and select a prototyping method for	
	industrial product	
	5. Evaluate the approaches of Aesthetic, Ergonomics and safety in	
	industrial product	
	6. Understand design for manufacturing, assembly and environment and	
	apply for industrial product	
	appry for industrial product	

Unit 1	Introduction to Product Design and Development	(6 Hrs)	
Overview	Overview of industrial design, Successful product, development of quality aspect of product design; Challenges of		
product of	levelopment, Market survey. Identify customer needs and product planning processes. P	roduct	
architectu	re: Implication of architecture, establishing the architecture, related system level design issu	ie.	
Unit 2	Product Design Methods	(6 Hrs)	
Creative and rational, clarifying objectives - the objective tree method, establishing functions- the function			
analysis method, setting requirements-the performance specification method, determining characteristics-the			
QFD method, generating alternatives - morphological chart method, evaluating alternatives - the weighted			
objective method, improving details – the value engineering method and design strategies.			

Unit 3	Product Specifications and Concept Generation	(6 Hrs)		
Concept	Concept generation, five step concept generation method, concept selection, concept screening, concept testing,			
Product s	pecification, steps to establish the target specifications.			
Unit 4	Industrial Design and Prototyping	(6 Hrs)		
Its need,	impact and quality, industrial design process and its management, legal issues in product	design, IPR,		
design	resources, economics and management of product development	projects.		
Prototyping: Basics and principles of prototyping, Rapid prototyping technologies, planning for prototypes				
Unit 5	Aesthetics, Ergonomics and Industrial Safety	(6 Hrs)		
Introduction-General approach to the man-machine relationship-workstation design working position and posture.				
An approach to industrial design - elements of design structure for industrial design in engineering applications in				
manufacturing systems. Environmental Application of ergonomics in industry for safety, health and environment				
control. Safety and ISO 14000 Systems				
Unit 6	Design for Manufacture, Assembly and Environment	(6 Hrs)		
Estimating manufacturing cost, reducing component, assembly and support costs, design for assembly, design for				
disassembly, design for environment, design for graphics and packaging, effective prototyping-principle and				
planning. Product data management. Innovation and creativity in product design. Product costing, value				
	ng, aesthetic concepts.			

Project Based Learning:

- 1. Quality function deployment
- 2. Aesthetics and ergonomics
- 3. Design for manufacturing and assembly
- 4. Design for environment
- 5. Rapid prototyping

Term Work: Use of different CAD software *viz*. CATIA/ ProE/ SolidWorks/ Uni-Graphics while doing following case studies:

- 1. A case study on market study to identify costumer needs
- 2. A case study on use of morphological analysis
- 3. A case study on Quality Function Development (QFD)
- 4. A case study of one aesthetic considerations in product design
- 5. Failure Modes and Effects Analysis (FMEA) in product design
- 6. A case study on Design for Manufacturing
- 7. A case study on Product Lifecycle Management (PLM)
- 8. A case study of one ergonomic considerations in product design
- 9. A case study of one industrial safety considerations in product design

Text Books:

- 1. Product Design and Development: Karl T. Ulrich, Steven G. Eppinger; Irwin McGraw Hill
- 2. Product design and Manufacture: A.C. Chitale and R.C. Gupta; PHI Chitale & Gupta, "Product Development", Tata McGraw Hill
- 3. New Product Development: Tim Jones, Butterworth, Heinemann, Oxford, 1997.
- 4. Product Design for Manufacture and Assembly: Geoffrey Boothroyd, Peter Dewhurst and Winston Knight.

Reference Books

1. Product Design: Otto and Wood; Pearson education.

- Industrial Design for Engineers: Mayall W.H, London, Hiffee books Ltd, 1988
 Introduction to ergonomics R.C. Bridger, McGraw Hill Pub.
 Product Design Kevin Otto, Kristin Wood Pierson Education

Unit Tests

Unit Test-I	Unit-I,II,III
Unit Test-II	Unit-IV,V,VI

Elective-II: Engineering Economics

Designation of Course	Name of the subject						
Teaching Scheme:	Examination Scheme:	v					
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	02				
Tutorial:Hours/ Week	Internal Assessment	40 Marks	03				
Practical: - 02 Hours/ Week	Term Work	25 Marks	- 01				
	Oral/Practical	Marks	- 01				
	Total	125 Marks	04				

Course Prerequisites: -	The students should have knowledge of Basic of Mathematics
Course Objectives: -	Students will be able to understand the economics behind running a successful engineering project
Course Outcomes: -	 Student should be able to Understand the basic concepts of economics any apply them for selection and planning Understand time value of money and calculate the value of money at any given time in a project Understand Basic Methodologies of Engineering Economic Analysis and use them to for selection of project Use various methods to compare two different projects to check their viability Use replacement analysis for panning and changing of resources in a project Plan for Depreciation and Corporate Income Taxes

Unit 1	Introduction to Economics	(06 Hrs.)						
Introduction to Economics- Flow in an economy, Law of supply and demand, Concept of Engineering								
Economic	Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics –							
Element of	of costs, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost,	Break-even						
analysis –	V ratio, Elementary economic Analysis - Material selection for product Desig	gn selection						
for a prod	uct, Process planning.							
Unit 2 I	Interest and Time Value of Money	(06 Hrs.)						
Introducti	on to Time Value of Money; Simple Interest; Compound Interest; Nominal In	nterest rate;						
Effective	Interest rate; Continuous Compounding; Economic Equivalence; Developmen	t of Interest						
Formulas;	Formulas; The Five Types of Cash flows; Single Cash flow Formulas; Uneven Payment Series;							
Equal Pay	ment Series; Linear Gradient Series; Geometric Gradient Series.							
Unit 3 I	Basic Methodologies of Engineering Economic Analysis	(06 Hrs.)						
Minimum	Attractive (Acceptable) Rate of Return (MARR); Payback Period Method;	Equivalent						
Worth Methods: Present Worth Method, Future Worth Method, Annual Worth Method; Rate of								
Return Me	ethods: Internal Rate of Return Method; External/Modified Rate of Return Method	hod; Public						

Sector Economic Analysis (Benefit Cost Ratio Method);	Introduction to Lifecycle Costing;
Introduction to Financial and Economic Analysis	

Unit 4	Comparative Analysis of Alternatives
--------	---

Comparing Mutually Exclusive Alternatives having Same useful life by

1. Payback Period Method and Equivalent Worth Method

2.Rate of Return Methods and Benefit Cost Ratio Method

Comparing Mutually Exclusive Alternatives having different useful lives by

1. Repeatability Assumption

2.Co-terminated Assumption

3. Capitalized Worth Method

Comparing Mutually Exclusive, Contingent and Independent Projects in Combination.

Un	nit 5	Repla	aceme	nt Ai	nalysis								(0	6 H	[rs.)
-			0 0				1	7							0

Fundamentals of Replacement Analysis: Basic Concepts and Terminology; Approaches for Comparing Defender and Challenger; Economic Service Life of Challenger and Defender Replacement Analysis When Required Service Life is Long: Required Assumptions and Decision Framework; Replacement Analysis under the Infinite Planning Horizon; Replacement Analysis under the Finite Planning Horizon

Unit 6 Depreciation and Corporate Income Taxes

(06 Hrs.)

(06 Hrs.)

Concept and Terminology of Depreciation; Basic Methods of Depreciation: Straight line method, Declining Balance Method, Sinking Fund Method, Sum of the Year Digit Method, Modified Accelerated Cost Recovery System (MACRS); Introduction to Corporate Income Tax; After Tax Cash flow Estimate; General Procedure for Making After Tax Economic Analysis.

Term Work

- 1. Completing a break even analysis of a company
- 2. Calculation of time value of money
- 3. Calculating the feasibility of a project by economic analysis
- 4. Comparing Mutually Exclusive Alternatives having Same useful life by Payback Period Method and Equivalent Worth Method
- 5. Comparing Mutually Exclusive Alternatives having Same useful life by Payback Rate of Return Methods and Benefit Cost Ratio Method
- 6. Comparing Mutually Exclusive Alternatives having different useful lives
- 7. Replacement analysis of a machine
- 8. Calculation of depreciation of a machine
- 9. Calculation of corporate taxes.

Project Based Learning

- 1. Case study on break even analysis of a company
- 2. Case study on Calculation of time value of money
- 3. Case study on feasibility of a project by economic analysis
- 4. Case study on Comparing Mutually Exclusive Alternatives having Same useful life by Payback Period Method and Equivalent Worth Method
- 5. Case study on Comparing Mutually Exclusive Alternatives having Same useful life by Payback Rate of Return Methods and Benefit Cost Ratio Method
- 6. Case study on Comparing Mutually Exclusive Alternatives having different useful lives

- 7. Case study on Replacement analysis of a machine
- 8. Case study on Calculation of depreciation of a machine
- 9. Case study on Calculation of corporate taxes.

Textbooks

1. R. Paneerselvem, Engineering Economics, Prentice Hall India.

Reference Books

- 1. Chan S. Park, Contemporary Engineering Economics, Prentice Hall, Inc.
- 2. E. Paul De Garmo, William G. Sullivan and James A. Bonta delli, Engineering Economy, MCMilan Publishing Company.
- 3. James L. Riggs, David D. Bedworth and Sabah U. Randhawa, Engineering Economics, TataMCGraw Hill Education Private Limited.

Unit Tests

Unit Test-I	Unit- I,II, III
Unit Test-II	Unit- IV, V, VI

Elective-II: PROJECT MANAGEMENT & ETHICS (Course Code C410.3)

Designation of Course	Project Management & Ethics						
Teaching Scheme:	Examination Scheme:	Examination Scheme:					
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	- 03				
Tutorial:Hours/ Week	Internal Assessment	40 Marks	03				
Practical: - 02 Hours/ Week	Term Work	25 Marks	- 01				
	Oral/Practical	Marks	01				
	Total	125 Marks	04				

Course	The students should have knowledge of
Prerequisites: -	1. Mathematics & Statistics
-	2. Industrial engineering & management
	3. Soft skills and professional skills
Course Objectives: -	1. To create awareness about the concepts of project management and its components
	2. To apply the techniques specified by project management body of knowledge for effective project management.
	3. To create awareness of social and professional responsibility among stakeholders
Course Outcomes: -	The students should be able to-
	1. Understand concepts of project management and apply it to various
	phases in project life cycle
	2. Understand economic models, evaluate project profitability and analyze risk management
	3. Understand different cost estimating & forecasting methods to apply in project budgeting
	4. Understand the methods of project planning, scheduling and apply it to reduce project duration
	5. Understand the project execution, monitoring, control process and evaluate the performance of the project
	6. Understand professional ethics of project management and apply it for organizational benefits

Unit I	Unit IINTRODUCTION TO PROJECT MANAGEMENT(06 Hrs.)								
Project, Pr	Project, Project Management, Management by projects, Project Management Associations, Benefits								
of Project	Management, Project management Process, Role of Project Manager, Project	t Lifecycle							
Unit II	PROJECT MANAGEMENT TECHNIQUES AND RISK								
Unit II	MANAGEMENT	(06 Hrs.)							
Feasibility	/ Studies, Numerical Models (Payback Period, Return on Investment, Net Pro	esent Value,							
Internal r	Internal rate of Return), Scoring Models, Break Even Analysis, Project Risk Management:								
Introducti	on, Risk, Risk Management, Role of Risk Management in Overall Project M	lanagement,							
Steps in R	isk Management, Risk Identification, Risk Analysis, Reducing Risks.								
Unit III	PROJECT COST ESTIMATING	(06 Hrs.)							
Estimating	Estimating terminology, Project Costs, Estimating Methods (Jobbing, Factoring, Inflation,								
Economies of Sales, Unit Rates, Day Work), Analogous Estimating, Parametric Estimating, Bottom-									
Up Estim	ating, Three-Point Estimates, Monte Carlo Simulation, Project Budgeting	g, Resource							
Allocation	n, Cost Forecasts.								
Unit IV	PROJECT PLANNING AND SCHEDULING	(06 Hrs.)							

Project Planning: Introduction, Need of Project Planning, Project Life Cycle, Roles, Responsibility and Team Work, Project Planning Process, Work Breakdown Structure (WBS), Scheduling: Introduction, Development of Project Network, Time Estimation, Determination of the Critical Path, PERT Model, Measures of variability, CPM Model, Network Cost System.

Unit V PROJECT MONITORING AND CONTROL

(06 Hrs.)

Project Execution and Control: Introduction, Project Execution, Project Control Process, Purpose of Project Execution and Control, Project Management Information System: Introduction, Project Management Information System (PMIS), Planning of PMIS, Design of PMIS, Project Performance Measurement and Evaluation: Introduction, Performance Measurement, Productivity, Project Performance Evaluation, Benefits and Challenges of Performance Measurement and Evaluation, Controlling the Projects

Unit VI PROFESSIONAL RESPONSIBILITY (ETHICS)

(06 Hrs.)

Ensuring Integrity and Professionalism, Project Management Knowledge Base, Enhancing Individual Competence, Balancing Stakeholder Interests, Interactions with Team Members and Stakeholders, Templates, Tools and Techniques

Term Work

- 1. Identify the Key Components of a Project
- 2. Create a Project with MS Project
- 3. Represent Project Resources in MS Project
- 4. Perform Resource Leveling in MS Project
- 5. Plan and manage procurement
- 6. Plan and manage schedule
- 7. Develop, execute, and validate a strategy for stakeholder engagement
- 8. Determine risk management options
- 9. Displaying Calendar Information in a Gantt Chart

Project Based Learning

- 1. Case study involving various aspects of project
- 2. Case study involving various techniques used for project selection.
- 3. Case study of project cost estimation
- 4. Case study based on project scheduling
- 5. Industrial case study of project ethics
- 6. Case study on project risk management

Textbooks

- 1. Erik Larson, Clifford Gray; "Project Management: The Managerial Process"; McGraw Hill Education; Sixth edition (1 July 2014)
- 2. Panneerselvam R; "Project Management"; Prentice Hall India Learning Private Limited; 1 Edition (2009)
- 3. Samuel J. Mantel, Jack R. Meredith; "Project Management: A Managerial Approach"; Wiley; Eighth edition (6 August 2012)
- 4. Gupta R; "Project Management"; Prentice Hall India Learning Private Limited; Second edition (2014)

Reference Books

- 1. Project Management Institute; "A Guide to the Project Management Body of Knowledge (PMBOK Guide)"; 5th Revised edition (1 January 2013)
- 2. Harold Kerzner; "Project Management: A Systems Approach to Planning, Scheduling and Controlling Paperback"; Wiley; tenth edition (20 November 2012)

Unit Tests

Unit Test-I	Unit- I,II, III
Unit Test-II	Unit- IV, V, VI

Elective-II: VIRTUAL REALITY (Course Code C410.4)

Designation of Course	Virtual Reality				
Teaching Scheme:	Examination Scheme:		Credits Allotted		
Theory:- 03Hours/ Week	End Semester Examination	60 Marks	- 03		
Practical:- 02 Hours/ Week	Internal Assessment	40 Marks	03		
	Term Work	25 Marks	01		
	Total	125 Marks	04		

Course	Companion Course, if any: Virtual Reality Lab	
Prerequisites: - Course Objectives:-	This course is designed to give historical and modern overviews and perspectives on virtual reality. It describes the fundamentals of sensation,	
	perception, technical and engineering aspects of virtual reality systems.	
Course Outcomes:	The students should be able to-	
-	1. Describe how VR systems work and list the applications of VR.	
	2. Understand the design and implementation of the hardware that enables VR systems to be built.	
	3. Understand the Geometry of Virtual Worlds & The Physiology of Human Vision.	
	4. Understand the system of human vision and its implication on perception and rendering.	
	5. Explain the concepts of motion and tracking in VR systems.	
	6. Describe the importance of interaction and audio in VR systems.	

Unit I	Introduction to Virtual Reality	(06Hrs.)		
Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of				
Virtual Re	Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output-			
Visual, Au	ral & Haptic Displays, Applications of Virtual Reality.			
Unit II	Representing the Virtual World	(06 Hrs.)		
Represent	ation of the Virtual World, Visual Representation in VR, Aural Representation	in VR and		
Haptic Re	presentation in VR			
Unit III	The Geometry of Virtual Worlds & The Physiology of Human Vision	(06 Hrs.)		
Geometric	Models, Changing Position and Orientation, Axis-Angle Representations of	of Rotation,		
Viewing 7	Viewing Transformations, Chaining the Transformations, Human Eye, eye movements &			
implicatio	ns for VR.			
Unit IV	Visual Perception & Rendering	(06 Hrs.)		
Visual Pe	rception - Perception of Depth, Perception of Motion, Perception of Color,	Combining		
Sources of Information Visual Rendering -Ray Tracing and Shading Models, Rasterization,				
Correcting	Optical Distortions, Improving Latency and Frame Rates			
Unit V	Motion & Tracking	(06 Hrs.)		
Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in				
the Virtual World, Mismatched Motion and Vection Tracking- Tracking 2D & 3D Orientation,				
Tracking I	Position and Orientation, Tracking Attached Bodies			
Unit VI	Interaction & Audio	(06 Hrs.)		
Interaction	n - Motor Programs and Remapping, Locomotion, Manipulation, Social Interac	tion. Audio		

-The Physics of Sound, The Physiology of Human Hearing, Auditory Perception, Auditory Rendering.

Term Work

- 1. Installation of Unity and Visual Studio, setting up Unity for VR development, understanding documentation of the same.
- 2. Study and demonstration of depth perception.
- 3. Study and demonstration of skeleton tracking for various application
- 4. Demonstration of the working of HTC Vive, Google Cardboard, Google Daydream and Samsung gear VR.
- 5. Develop a scene in Unity that includes a cube and apply transformations on the 3 game objects.
- 6. Develop a scene in Unity that includes a plane and apply transformations on the 3 game objects
- 7. Develop a scene in Unity that includes a sphere and apply transformations on the 3 game objects
- 8. Develop a scene in Unity that includes a video source
- 9. Develop a scene in Unity that audio source.

Project Based Learning

Exemplar/ Case Studies

- 1. Study the use of Virtual Reality at NASA
- 2. GHOST (General Haptics Open Software Toolkit) software development toolkit.
- 3. Sweeping coverage of eye movements
- 4. Automatic stitching of panoramas in Virtual Reality
- 5. A virtual Study Use Case- NICE, An Educational Experience
- 6. Side effects of using VR systems/ VR sickness.

Text Books

- 1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016
- 2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002
- 3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009.

Reference Books

- 1. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.
- 2. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.
- 3. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005.
- 4. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003

Unit Tests

Unit Test-I	Unit-I,II, III
Unit Test-II	Unit-IV, V, VI

Elective-II: ADDITIVE MANUFACTURING & RAPID PROTOTYPING

(Course Code C410.5)				
Designation of Course EL II: Additive Manufacturing & Rapid Prototyping			l Prototyping	
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	- 03	
Tutorial:Hours/ Week	Internal Assessment	40 Marks	05	
Practical: - 02 Hours/ Week	Term Work	25 Marks	01	
	Oral/Practical	Marks	01	
	Total	125 Marks	04	

Course	The students should have knowledge of			
Prerequisites: -	1) Solid Modelling, Auto CAD			
	2) Manufacturing Technology I & II			
	3) Design & Analysis of Machine Components			
Course Objectives: -	 To understand the fundamental concepts of Additive Manufacturing (i.e., Rapid Prototyping) and 3-D printing, its advantages, and limitations. To classify various types of Additive Manufacturing Processes and know their working principle, advantages, limitations etc. To have a holistic view of various applications of these technologies in relevant fields such as mechanical, Bio-medical, Aerospace, electronics etc. 			
Course Outcomes: -	The students should be able to-			
	1. Understand the importance of additive manufacturing process and AM process chain			
	 Understand and apply Liquid-based and Solid Based additive manufacturing processes. 			
	 Understand and apply powder based additive manufacturing processes. Understand and apply various Metal Additive Manufacturing process for different products 			
	 Apply various AM data formatting and data processing techniques for different products 			
	6. Select suitable material for AM process and explore different applications of AM parts from various fields like Automobile, Aerospace, Bio-medical etc.			

Unit I Introduction to Rapid Prototyping	(06 Hrs.)			
Introduction: Prototyping fundamentals, Historical development, Fundamentals of Rapid				
Prototyping, Advantages and Limitations of Rapid Prototyping, Commonly used Terms,				
Classification of RP process, AM process chain: Conceptualization, CAD, converse	ion to STL,			
Transfer to AM, STL file manipulation, Machine setup, build, removal and clean up, post processing				
Unit II Liquid-based and Solid Based Rapid Prototyping	(06 Hrs.)			
Liquid-based Rapid Prototyping Systems: Stereo lithography Apparatus (SLA), Solid ground				
curing (SGC). Models and specifications, Process, working principle, Applications, Advantages and				
Disadvantages, Case studies.				
Solid-based Rapid Prototyping Systems: Laminated Object Manufacturing (LOM), Fused Deposition				
Modeling (FDM), Models and specifications, Process, working principle, Applications, Advantages and				
Disadvantages, Case studies.				
Unit III Powder Based Rapid Prototyping	(06 Hrs.)			

Powder Bed Fusion AM Processes: Selective laser Sintering (SLS), Materials, Indirect and direct SLS, Powder fusion mechanism and powder handling, Process Modelling, SLS Metal and ceramic part creation, post processing, post curing, surface deviation and accuracy, Electron Beam melting (EBM), Process Benefits and Drawbacks, Applications of Powder Bed Fusion Processes, Post processing of AM parts

Laser Engineered Net Shaping (LENS): Processes, materials, products, advantages, limitations, and applications– Case Studies.

Unit IV Design for Additive Manufacturing

(06 Hrs.)

(06 Hrs.)

Design tools for AM, Part Orientation, Removal of Supports, Hollowing out parts, Inclusion of Undercuts and Other Manufacturing Constraining Features, Interlocking Features, Reduction of Part Count in an Assembly, Identification of markings/ numbers etc.

Guidelines for process selection: Introduction, selection methods for a part, challenges of selection, example system for preliminary selection, production planning and control

Unit V AM Data Formatting and Data Processing	Unit V	AM Data Formatting and Data Processing
---	--------	--

Rapid Prototyping Data Formats: STL Format, STL File Problems, Consequence of Building Valid and Invalid Tessellated Models, STL file Repairs: Generic Solution, Other Translators, Newly Proposed Formats. Rapid Prototyping Software's: Features of various RP software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor.

AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.

•		-		-	-	
Unit VI	AM Materials	and Applicati	ions			(06 Hrs.)

3D Printing Materials: properties, characteristics, and application of all types (ABS, PLA, PVA, HDPE, PET, PETG etc.) Types of Composites Materials, properties, characteristics, and application of all types. (N6, N12, ABS Carban Fiber, etc.)

RP Applications: Material Relationship, Application in Design, Application in Engineering, Analysis and Planning, Aerospace Industry, Automotive Industry, Jewelry Industry, Coin Industry, GIS application, Arts and Architecture.

RP Medical and Bioengineering Applications: Planning and simulation of complex surgery, Customized Implants & Prosthesis, Design and Production of Medical Devices, Forensic Science and Anthropology, Visualization of Biomolecules.

Term Work

- 1. Study of 3D Printing Machines
- 2. Study of different AM Software's
- 3. Study of AM Data Formatting and Data Processing
- Study and demonstration of Plastic 3D Printing using FDM based Rapid Prototyping (Plastic & Composites)
- 5. Study and demonstration of Plastic 3D Printing using SLS based Rapid Prototyping (Plastic & Composites)
- 6. Study and demonstration of Plastic 3D Printing using Liquid based/solid based/powder based Rapid Prototyping (Plastic & Composites)
- 7. Study and demonstration of Plastic 3D using FDM based Rapid Prototyping Printing (Metals)
- 8. Assignment on 3D Printing Applications.
- 9. Select appropriate 3D printing material and justify it for following application: a. Prototyping
 - b. medical appliances
 - c. Construction.
- 10. Selection of 3d printing machine specification for following materials: -

- a. Polymers
- b. Composites
- c. Metals
- 11. To measure surface quality and mechanical properties of AM product
- 12. Study of CAM packages for AM

Project Based Learning

Students have to prepare and submit a demonstration models based on above syllabus (Not limited to)

- 1. To prepare a demonstration model/chart of AM Processes chain
- 2. To prepare a demonstration model of liquid-based AM technologies
- 3. To prepare a demonstration model of solid based AM technologies
- 4. To prepare a demonstration model of powder-based AM technologies
- 5. To prepare a 3D printed model for various applications (Bio-medical, aerospace etc.)
- 6. To prepare a document on data formatting and data process by selecting one application

Textbooks

- 1. Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory and Practice", Springer, 2006.
- 2. Anupam Saxena, Birendra Sahay, "Computer Aided Engineering Design", Springer, 2005.
- 3. Patri K. Venuvinod and Weiyin Ma, "Rapid Prototyping: Laser-based and OtherTechnologies", Springer, 2004.
- 4. Chua Chee Kai, Leong Kah Fai, "3D Printing and Additive Manufacturing: Principles & Applications", 4th Edition, World Scientific, 2015.
- 5. Rafiq Noorani, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley& Sons, 2006.
- 6. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.

Reference Books

- 1. Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles and Applications", Worldscientific, 2003.
- 2. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: RapidPrototyping to Direct Digital Manufacturing", Springer, 2010
- 3. D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of RapidPrototyping and Rapid Tooling, Springer 2001.
- 4. David F. Rogers, J. A. Adams, "Mathematical Elements for Computer Graphics", TMH,2008.
- 5. Kevin N. Otto, Kristin L. Wood, "Product Design", Pearson Education, 2004.

Unit Tests

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

Energy Audit & Management

(Course Code C411)

Designation of Course	Energy Audit & Management			
Teaching Scheme	Examination Scher	Credits Allotted		
Theory: - 4 hrs./Week	End Semester Examination	60 marks	04	
	Internal assessment	40 marks		
	Total	100 marks	04	

Course Prerequisite	The student should have knowledge of -
	1. Basic Physics
	2. Basic Electrical Engineering
	3. Basic Thermal Engineering
	4. Mathematics
Course Objective	1. Understand basic energy conversion, conservation, and management
	principles.
	2. Identify sources of energy loss and target savings.
	3. Understand design of waste heat recovery systems, efficient power
	cycle, and power generation systems.
	4. To enable students in carrying out life cycle cost analysis and
	budgeting.
Course Outcomes	1. Analyze about energy scenario nationwide and worldwide
	2. To know the procedure for the balance of energy and
	material in different processes
	3. To conduct an economic analysis of energy conservation
	measures
	4. To understand a system of electrical energy management
	5. To understand a system of thermal energy management
	6. Conduct energy audits and formulate & implement energy
	conservation strategies.

UNIT I	Energy Scenario	8 Hrs.	
Energy needs	of a growing economy, Long-term energy scenario, Energy pricing, E	nergy sector	
reforms, Ene	rgy and Environment: Air pollution, Climate change, Energy Secur	rity, Energy	
conservation a	and its importance, Energy strategy for the future, Energy conservation A	ct-2001 and	
its features.			
UNIT II	Energy Audit	8 Hrs.	
Energy Audit	Energy Audit: Types and Methodology; Scope of Energy Audit, Energy Audit Reporting Format;		
Understanding	Understanding Energy Costs; Benchmarking and Energy Performance; Matching Energy Usage to		
Requirement;	Requirement; Maximizing System Efficiency Fuel and Energy Substitution; Energy Audit		
Instruments; Duties and responsibilities of energy auditors. Energy Management of Building and			
Energy audit of Building- Energy management matrix monitoring and targeting Case Studies			
UNIT IIIEconomic Analysis of Energy Conservation Measures8 Hrs.			

Economics: Fundamentals: Cash flows, Inflation Rates, Time Points and Periods, Discount Rates, Cost of Capital, Present value, Taxes, Uncertainty and Risk Economic Measures: Net Present Value, Total Life-Cycle Cost, Revenue Requirements, Internal Rate of Return, Modified Internal Rate of Return, Simple Payback Period, Discounted Payback Period, Benefit-to-Cost Ratios, Savings-to-Investment Ratios, Profitability index estimation

UNIT IV	Electrical energy management

8 Hrs.

Electricity tariff, Load management and maximum demand control, Power factor improvement, Distribution, and transformer losses. Losses in induction motors, Motor efficiency, Factors affecting motor performance, Rewinding and motor replacement issues, energy efficient motors, Light source, Choice of lighting, Luminance requirements, and Energy conservation avenues. Case Studies

UNIT V Thermal energy management		8 Hrs.
Energy conservation in boilers, steam turbines and industrial heating systems; Application of FBC;		
Cogeneration and waste heat recovery; Thermal insulation; Heat exchangers and heat pumps;		
Building Energy Management. Case Studies on Thermal Energy Management. Case Studies.		

UNIT VI Material and Energy Balance

8 Hrs.

Basic Principles, Sankey diagrams, Material balances for different processes, Energy balances, heat balances, Methods for preparing process flow chart, Procedures to carry out the material and energy balance in different processes.

Project based learning:

- 1. Conduct preliminary energy audit and prepare report on electrical plant.
- 2. Conduct preliminary energy audit and prepare report on thermal plant.
- 3. Prepare energy audit report on small scale industry with payback period.
- 4. Conduct energy audit on residential house/own house with payback period.
- 5. Prepare economical audit sheet of any small scale industry.
- 6. Prepare social instructions charts for energy saving tricks.
- 7. Write one research paper on audit carried out in small scale industry.
- 8. Prepare standard energy efficient model for residential house.

Text Books:

- 1. Electric Energy Utilization and Conservation by S C Tripathy, Tata McGraw hill publishing company Ltd. New Delhi.
- 2. Energy management by Paul o' Callaghan, Mc–Graw Hill Book company–1st edition, 1998.
- 3. Energy management handbook by W. C. Turner, John Wiley, and sons.
- 4. Energy management and conservation –k v Sharma and Venkata shariah-I K International Publishing House Pvt ltd, 2011.

Reference Books:

- 1. Barney L. Capehart, Wayne C. Turner and William J. Kennedy, "Guide to Energy Management", Seventh Edition, The Fairmont Press Inc., 2012.
- 2. Albert Thomann, "Handbook of Energy Audits", Sixth Edition, The Fairmount Press, 2003.
- 3. G. G. Rajang, "Optimizing Energy Efficiencies in Industry", Tata McGraw Hill, 2001
- 4. Wayne C. Turner, "Energy Management Hand Book", The Fairmount Press, Inc., 2001.
- 5. Charles M. Gottschalk, "Industrial Energy Conservation", John Wiley and Sons, 1996.
- 6. Craig B. Smith, "Energy Management Principles", Pergamon Press, 2015.
- 7. IEEE Recommended "Practice for Energy Management in Industrial and Commercial Facilities", IEEE std 739 1995. (Bronze book).
- 8. Hamis, "Energy Auditing and Conservation; Methods, Measurements, Management and Case Study", Hemisphere Publishers, Washington, 1980.
- 9. C.W. Gelling's and J.H. Chamberlin, "Demand-Side Management Planning", Fairmount Press, 1993.

- 10. Wayne C Turner, "Energy Management Handbook", The Fairmount Press, 2006.
- 11. Bureau of Energy Efficiency Study material for Energy Managers and Auditors Examination: Paper I to IV.

Unit Tests: -

Unit Test-I	Unit- I, II and III
Unit Test-II	Unit- IV, V and VI

Reliability and Machine Condition Monitoring
(Course Code C412)

Designation of Course	Reliability and Machine Condition Monitoring		
Teaching Scheme:	Examination Scheme:	Examination Scheme: Credits Allot	
Theory:- 03Hours/ Week	End Semester Examination	60 Marks	03
Practical:- 02 Hours/ Week	Internal Assessment	40 Marks	03
Tutorial;- 01 Hours/Week	Term Work	25 Marks	01
	Oral	25 Marks	01
	Total	150 Marks	05

Course	Student should have knowledge of Engineering Mathematics, Probability,		
Prerequisites: -	Statistics and Mechanical Vibration		
Course	1. Understanding of hosis minsiples of reliability for ensuring systematicable		
Course	1. Understanding of basic principles of reliability for ensuring sustainable		
Objectives:-	product design.		
	2. Application to system requirements, design, manufacturing and testing,		
	with real world examples		
	3. Understand in detail Asset Management, Maintenance, Quality and		
	Productiveness		
Course Outcomes:	Student should be able to		
-	1. Understand different measures of reliability		
	2. Know different probability methods used in reliability engineering		
	3. Calculate MTTF, MTBF, failure rate and hazard rate.		
	4. To acquire knowledge of methods for evaluation of reliability of		
	different systems.		
	5. Understand the concepts of maintainability and availability in reliability		
	engineering		
	6. Understand the reliability design procedure		
	7. Know different methods to test reliability of the system.		

Course Contents

Unit I	Fundamental Concepts of Reliability and Reliability Measures (0)			
Brief histo	Brief history, concepts, terms and definitions, applications, the life cycle of a system, concept of			
failure, typ	pical engineering failures and their causes			
Reliabilit	y Measures: Reliability function-R(t), cumulative distribution function (CDF)-	- F(t),		
probability	y density function (PDF) – $f(t)$, hazard rate function- $\lambda(t)$, Mean time to failure (MTTF) and		
Mean time	e between failures (MTBF), typical forms of hazard rate function, bathtub curve			
Unit II	Probability Concepts and Failure Data Analysis	(06 Hrs.)		
Theory of	Theory of probability, rules of probability, Introduction to independence, mutually exclusive,			
conditiona	conditional probability random variables, discrete and continuous probability distributions. Binomial,			
normal C	omparison of probability distributions - , lognormal, Weibull, exponentia	l, Standard		
deviation,	deviation, variance, mean, mode and Central Limit Theorem.			
Failure D	Failure Data Analysis Data collection and empirical methods, estimation of performance measures			
for ungrouped complete data, grouped complete data, analysis of censored data, fitting probability				
distributions graphically (Exponential and Weibull) and estimation of distribution parameters				
Unit III	Unit IIIReliability Evaluation of Systems(06 Hrs.)			
Reliability Improvement Redundancy, element redundancy, unit redundancy, standby redundancy -				

Reliability Improvement Redundancy, element redundancy, unit redundancy, standby redundancy types of stand by redundancy, parallel components single redundancy, multiple redundancies, cut and tie set approach for reliability evaluation. Star and delta method, matrix method (Numerical). Introduction to Reliability allocation or apportionment, reliability apportionment techniques- equal apportionment, AGREE, ARINC, Minimum effort method (Numerical)

Unit IVDesign for Reliability and Maintainability(06 Hrs.)Reliabilitydesign process and design methods, reliability allocation, failure modes, effects and
criticality analysis (FMECA), fault tree and success tree methods, symbols used, maintainability
design process, quantifiable measures of maintainability, repair versus replacementImage: Comparison of the symbols of the sym

Unit VData Acquisition, Signal Processing, Applications and Representation:(06 Hrs.)

Introduction, Collection of vibration signal – vibration transducers, characteristics and mountings, Conversion of vibrations to electrical signal. The fast Fourier transform (FFT) analysis, Time waveform analysis, Phase signal analysis, Spectral signal processes.

Unit VIMachinery Fault Diagnosis Using Vibration Analysis and Oil and
Particle Analysis Oil Fundamentals

(06 Hrs.)

Commonly witnessed machinery faults diagnosed by vibration analysis, correcting faults that cause vibration; Balancing, Alignment, Resonance vibration control with dynamic absorbers.

Condition-based maintenance and oil analysis, Setting up an oil analysis program, Oil analysis – sampling methods, Oil analysis – lubricant properties, Oil analysis – contaminants in lubricants, Particle analysis techniques, Alarm limits for various machines.

Term Work

Term work shall consists of

- 1. Data acquisition using a velocity pickup.Data acquisition using an accelerometer.
- 2. Data acquisition of sound signals.
- 3. Spectral analysis of velocity, acceleration noise signals.
- 4. Experiment demonstrating balancing of rotating shaft shaft.

Project Based Learning

Exemplar/ Case Studies

- 1 Data acquisition using a velocity pickup.
- 2 Data acquisition using an accelerometer.
- 3. Data acquisition of sound signals.
- 4. Spectral analysis of velocity, acceleration noise signals.
- 5. Experiment demonstrating balancing of rotating shaft shaft.

Text Books

1. Ebling C. E., 2004, "An Introduction to Reliability and Maintainability Engineering", Tata McGraw Hill Education Private Limited, New Delhi.

2. Srinath L. S., 1991, "Reliability Engineering", East West Press, New Delhi.

3. Birolini A., 2010, "Reliability Engineering: Theory and Practice", Springer.

4. Parkhi R. M., "Market Leadership by Quality and Reliability", Vidyanand Publications 2012.

5. Roy B. and Allan R. N., 1992, "Reliability evaluation of engineering systems: concepts and techniques", Springer.

6. Thomson, W. T., "Theory of Vibration with Applications", CBS Publishers and Distributors, New Delhi, 1990

7. Gupta K., "Introductory Course on Theory and Practice of Mechanical Vibrations", New Age International Ltd., 1984

8. J. S. Rao., "Vibratory Condition Monitoring of Machines", Narosa publishing house, New Delhi

Reference Books

1. Patrick D. T. Newton O'Conner, D., Bromley R., 2002, "Practical Reliability Engineering", John Wiley and Sons.

2. Rao S. S., 1992, "Reliability Based Design. McGraw-Hill

3. Andrew Kennedy, Skilling Jardine, Albert H. C. Tsang, 2006, "Maintenance, Replacement and

Reliability: Theory and Applications", CRC/Taylor and Francis.

4. Nachlas Joel A., 2005, "Reliability Engineering: Probabilistic Models and Maintenance Methods" Taylor and Francis.

5. Cyril M. Harris, Allan G. Piersol, "Shock and Vibration Handbook", McGraw-Hill Publishing Co.

6. C. Scheffer, Paresh Girdhar, "Practical Machinery Vibration Analysis and Predictive Maintenance", Newnes an imprint of Elsevie

Unit Tests

Unit Test-I	Unit-I,II, III
Unit Test-II	Unit-IV, V, VI

PROJECT STAGE -II (Course Code C413)

Designation of Course	Project Stage -II		
Teaching Scheme:	Examination Scheme:	Examination Scheme:	
Theory: Hours/ Week	End Semester Examination	Marks	
Tutorial:Hours/ Week	Internal Assessment	Marks	
Practical: - 04 Hours/ Week	Term Work	100 Marks	- 06
	Oral/Practical	100 Marks	- 00
	Total	200 Marks	06

Course	The students should have knowledge of		
Prerequisites: -	1. Knowledge of basic concepts in heat transfer.		
-	Basic information of thermodynamics Basic knowledge of fluid mechanics.		
	Basic knowledge of fluid mechanics.		
	Knowledge of basic concepts in mechanical engineering		
	5. Basic knowledge of design		
Course Objectives: -	1. To fabricate the designed equipment		
	2. To conduct laboratory and field testing of the new equipment		
	3. To analyze performance of the equipment with different performance		
	parameters		
	4. To make changes in design if necessary, based on the performance		
	analysis		
	5. To prepare project report and deliver presentation.		
	6. To work sincerely as a member of team		
Course Outcomes: -	The students should be able to-		
	1. Understand the latest changes in technological world and apply		
	fundamental principles of science and engineering.		
	2. Create ability to identify, formulate and model problems		
	3. Understand importance of sustainability and cost-effectiveness in		
	design and development of engineering solution.		
	4. Create ability to be multi skilled engineer with a good technical		
	knowledge, management, leadership, entrepreneurship skills.		
	5. Create awareness of social,		
	6. Create ability to communicate efficiently.		

Course Contents

Details of Project Stage -II

1. The project taken in the First semester will be continued as far as possible. In case after the training, the students wish to change their project, the same may be allowed after discussion with the faculty. The new project should be based on the training taken and should utilize the training experience.

In Semester II concentration will be on

- Hardware fabrication
- Testing of equipment
- Preparing a project report
- 2. The work will be evaluated through three presentations with aim of watching the progress and suggesting modifications for completing the project.

Operations Research Practices

Designation of Course	Operations Research Practices			
Teaching Scheme:	Examination Scheme:		Credits Allotted	
	End Semester Examination	-		
Practical: - 02 hours/Week	Internal Assessment	-		
	Term Work	25 Marks	1	
	Practical	-	-	
	Total	25 Marks	1	

(Course Code C414)

Course Prerequisites: -	Good knowledge of mathematics.
Course Objective: -	The students will be able to understand various models in operations research used in industries to solve problems
Course Outcomes	As a part of this course, students will:
	1. Understand graphical method of solving Linear
	ProgrammingProblems.
	2. Understand simplex method of solving Linear
	ProgrammingProblems.
	3. Understand transportation and assignment problems.
	4. Use CPM and PERT for modelling.
	5. Apply queuing theory to optimize queues.
	6. Use Inventory Control System to optimize inventory costs.

Unit 1 LPP: Graphical Method	(04 Hrs.)
Linear programming – Examples from industrial cases, formulation & definitions,	Matrix form.
Implicit	
assumptions of LPP. Graphical Method of solving the LPP.	
Unit 2 LPP: Simplex Method	(04 Hrs.)
Simplex Algorithm – slack, surplus & artificial variables, computational details, b 2 phasemethod. identification and resolution of special cases through simplex iter	
Unit 3 LPP: Special Cases	(04 Hrs.)
Transportation Problems - Examples, Definitions – decision variables, supp	ly & demand
constraints, formulation, Balanced & unbalanced situations, Solution method	ds – NWCR,
minimum cost and VAM, test for optimality (MODI method), degeneracy and its	resolution.
Assignment Problems - Examples, Definitions - decision variables, constraint	s, formulation,
Balanced & unbalanced situations, Solution method – Hungarian, test for opti	
method), degeneracy & its resolution.	•
Unit 4 Project Modelling	(04 Hrs.)
Project definition, Project scheduling techniques - Gantt chart, PERT & CPM, De	
critical paths, Estimation of Project time and its variance in PERT using statistica	l principles,
Unit 5 Inventory Model	(04 Hrs.)
Concept of inventory costs, Basics of inventory policy (order, lead time, types)	
quantity models – EOQ, POQ & Quantity discount models. EOQ models for disc	
Unit 6 Queuing Theory	(04 Hrs.)

Definitions – queue (waiting line), waiting costs, characteristics (arrival, queue, service discipline) of queuing system, queue types (channel vs. phase). Kendall's notation, Little's law, steady state behavior. Models with examples - M/M/1 and its performance measures.

Term work

Term work shall consist of any eight practicals described in syllabus and listed below.

- 1. Solution of linear programming problem using graphical method
- 2. Solution of linear programming problem with simplex method.
- 3. Problem solving using Big M method.
- 4. Problem solving using two phase method.
- 5. Solution of transportation problem.
- 6. Solution of assignment problem.
- 7. Identification of project duration using CPM
- 8. Finding probabilities of project completions using PERT
- 9. Performance measures for M/M/1 queuing model.
- 10. Determination of various inventory cost using inventory model.

Textbooks:

1. Operations Research: An Introduction. H.A. Taha.

Reference Books:

- 1. Linear Programming. K.G. Murthy.
- 2. Linear Programming. G. Hadley.
- 3. Principles of OR with Application to Managerial Decisions. H.M. Wagner.
- 4. Introduction to Operations Research. F.S. Hiller and G.J. Lieberman.
- 5. Elements of Queuing Theory. Thomas L. Saaty.
- 6. Operations Research and Management Science, Handbook: Edited by A. Ravi Ravindran.
- 7. Management Guide to PERT/CPM. Wiest& Levy.
- 8. Modern Inventory Management. J.W. Prichard and R.H. Eagle.

Robot Movement System (Course Code C415)

Designation of Course	Robot Movement System											
Teaching Scheme:	Examination Scl	Credits Allotted										
Theory: -	End Semester Examination		01									
Practical: 02 Hours/Week	Internal Assessment											
	Term Work	25 Marks										
	Total	25 Marks	01									

Course	The students should have knowledge of									
Prerequisites:	1.Mechanism and Mechanics									
-	2.Basic Electrical Engineering.									
	3.Engineering Mathematics									
Course	To provide knowledge about									
Objectives: -	1.Robot Movement system components									
0	2.Robot Motion control techniques									
	3.Mechanics of robot manipulator									
Course	The students should be able to									
Outcomes: -	1. To Identify robot movement system									
	2. To Understand robot drive system									
	3. To Understand robot end effector									
	4. To Select robot sensor as per application									
	5. To Understand robot motion control technique									
	6.To Evaluate Kinematics Model of Robot									

Unit-I	Introduction to Robot Movement System	04 Hrs.									
Introducti	on to robot movement system, Components of robot movement system	tem, working of									
robot mot	ion system, Robot configurations, Work volume and work envelope, I	Robot Joints and									
symbols,	Robot Coordinates, Robot Reference Frames, Resolution, accuracy a	and precision of									
Robot, Work cell control, Robot locomotive system and its types.											
Unit-II	Robot Drive Systems	04 Hrs.									
Pneumatio	c Drives, Hydraulic Drives, Mechanical Drives, Electrical Drives-D.C	C. Servo Motors,									
Stepper N	Iotors, A.C. Servo Motors, BLDC-Salient Features, Applications and	l Comparison of									
all these	Drives, Micro actuators, selection of drive, Power transmission sys	stems for robot,									
Motion co	onversion, Determination of HP of motor, Types of Gearboxes: - Plane	etary, Harmonic,									
Cycloidal	gearbox and gear Ratio, variable speed arrangements.										
Unit-III	End Effectors	04 Hrs.									
Grippers,	Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Mag	gnetic Grippers,									
Vacuum O	Grippers; Two Fingered and Three Fingered Grippers; Internal Gripper	ers and External									
Grippers;	Advance Grippers- Adaptive grippers, Soft Robotics Grippers,	Tactile Sensor									
Grippers;	Various process tools as end effectors; Robot end effectors interface	ace, Active and									
passive co	ompliance, Selection and Design Considerations.										
Unit-IV	Robot Sensor	04 Hrs.									
Position	sensors - Piezo Electric Sensor, LVDT, Resolvers. Proximity Se	ensor – Optical,									
Inductive and capacitive ,Encoders: Absolute and Incremental: - Optical, Magnetic, Capacitive,											
-	Position Sensors Range Sensors: Range Finders, Laser Range Meters,										
Force and Machine	torque sensors. Safety Sensor: Light Curtain, Laser Area Scanner, S	Safety Switches;									
what what where we have a second seco	/181011										

Unit-V	Robot motion control technique	04 Hrs.								
Introduction to robot motion control, Point to Point (PTP) control, Continuous path control (CP),										
controlled path, Stop to stop control, Trajectory planning, Joint and cartesian space trajectory.										
Unit-VI	Mechanics of Robot Manipulator Movement	04 Hrs.								
Co-ordina	te and vector transformation using matrices, Rotation matrix, Hor	mogenous								
Transform	Transformations-H Parameter, Forward and Inverse kinematics of 2 and 3 Link robot									
manipulat	or									
Term Wo	rk:									

Term work shall consist record of minimum 8 experiments from the following.

1.Study of different type of robot locomotive mechanism.

2. Study of different robot drive for Pick and place application

3.Demonstration of different type of robot gripper .

4. Study of robotics sensor used in AI based object sorting system

5.Demonstration of robot motion control system for object sorting system by robotic arm

6. Study and create robot joint trajectory by using any robotic simulation software

7. Analysis of Forward kinematics of 2 link manipulator

8. Analysis of Inverse kinematics of 2 link manipulator

9. Operation and troubleshooting of robot motion control system

Text Books :

1. M.P. Groover, "Automation, Production Systems & Computer Integrated Manufacturing", PHI, 3rd Edition, 2012.

2. M.P. Groover, M.Naegel, "Industrial Robotics, Technology, Programming & Applications", TMH,2nd Edition, 2012.

References Books :

1. J.G. Keramas, "Robotics Technology Fundamentals", Thompson Learning, 2nd Edition, 2002.

2. J.J.Craig "Introduction to Robotics Mechanics & Control", Pearson Education, 3rd Edition,2004.

3. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book co, 1987.

4. S.R. Deb, "Robotics Technology and Flexible Automation", TMH, 2nd Edition, 2010.

5. Mike Wilson, "Implementation of Robotic Systems"

B. TECH. & ROBOTICS& AUTOMATION: COURSE STRUCTURE CBCS-2021

Sr.	Course		Teaching Scheme (Hrs./Week)				Exa	minatio	n Scheme	(Marks)		Credits				
No.	Code	Name of Course	L	Р	Т	ESE	IA	тw	OR	PR	Total	L	Р	Т	Total	
1	C101	Linear Algebra, Calculus & Complex Variables	4	-	1	60	40	-	-	-	100	4	-	1	5	
2	C102	Waves & Solid State Physics	3	2	-	60	40	25	-	-	125	3	1	-	4	
3	C103	Electrical Engineering Systems	4	2	-	60	40	25	-	-	125	4	1	-	5	
4	C104	Mechanical Engineering Systems	3	2	-	60	40	50	-	-	150	3	1	-	4	
5	C105	Computer Aided Drafting & Visualization*	3	4	-	60	40	25	-	25	150	3	2	-	5	
6	C106	Computer Programming: Fundamentals (Using C/C++)	-	4	-	-	-	50	-	50	100	-	2	-	2	
	Total		17	14	1	300	200	175	-	75	750	17	7	1	25	

B. Tech. (Robotics & Automation) Sem.-I

*End Sem. Examination of 4 Hrs.; #: Based on TW & internal oral examination

B. Tech. (Robotics & Automation) Sem.-II

Sr.	Course			hing Sc rs./Wee			Exa	minatio	n Scheme	(Marks)	Credits				
No.	Code	Name of Course	L	Р	Т	ESE	IA	тw	OR	PR	Total	L	Р	Т	Total
1	C107	Differential Equations, Probability & Statistics	4	-	1	60	40	-	-	-	100	4	-	1	5
2	C108	Chemistry of Engineering Materials	3	2	-	60	40	25#	-	-	125	3	1	-	4
3	C109	Electronics Engineering Systems	4	2	-	60	40	25#	-	-	125	4	1	-	5
4	C110	Fundamentals of Robotics	4	2	-	60	40	25	-	25	150	4	1	-	5
5	C111	Engineering Mechanics	3	-	-	60	40	-	-	-	100	3	-	-	3
6	C112	Basics of PLC	-	2	-	-	-	50#	-	-	50	-	1	-	1
7	C113	Object Oriented Programming (Using Python)	-	4	-	-	-	50	-	50	100	-	2	-	2
	Total			12	1	300	200	175	-	75	750	18	6	1	25

#: Based on TW & internal oral examination

G	a		Teach	ing Sche	me (Hrs.	/Week)	E	xaminati	ion Scher	ne (Marl	ks)	Credits			
Sr. No.	Course Code	Name of Course	L	Р	Т	ESE	IA	TW	OR	PR	Total	L	Р	Т	Total
1	C201	Hydraulics & Pneumatics: Principals	4	2	-	60	40	25	25	-	150	4	1	-	5
2	C202	Theory of Machines	4	2	-	60	40	25	25	-	150	4	1	-	5
3	C203	Strength of Machine Components	4	0	1	60	40	-	-	-	100	4	-	1	5
4	C204	Electronic Circuits	3	0	-	60	40	-	-	-	100	3	-	-	3
5	C205	Embedded Systems [@]	3	2	-	60	40	25#	-	-	125	3	1	-	4
6	C206	Data Structures and Algorithms	-	2	-	-	-	25#			25		1	-	1
7	C207	MATLAB Programming	-	2	-	-	-	25	-	25	50	-	1	-	1
8	C208	Vocational Course-I ^{\$}	-	2	-		-	25	25	-	50	-	1	-	1
		Total	18	12	1	300	200	150	75	25	750	18	6	1	25
9	C209	Social Activity-I **	-	-	-		-	-	-	-	-	-	-	-	2

B. Tech. (Robotics & Automation) Sem.-III

#: Based on TW & internal oral examination; [@]Industry Taught Course-I; \$ Sensors, PLC & HMI: Basic Training;** Add on Course,

B. Tech. (Robotics & Automation) Sem.-IV

Sr.	Course	Name of Course	Teaching Scheme (Hrs./Week)				Exa	minatio	n Scheme	(Marks)	Credits				
No.	Code		L	Р	Т	ESE	IA	тw	OR	PR	Total	L	Р	Т	Total
1	C210	Digital Electronics [@]	4	-	-	60	40	-	-	-	100	4	-	-	4
2	C211	Power Electronics & Drives	3	2	1	60	40	25	25	-	150	3	1	1	5
3	C212	Manufacturing Technology-I	3	2	-	60	40	25	-	-	125	3	1	-	4
4	C213	Automatic Control Systems	4	2	-	60	40	25	25	-	150	4	1	-	5
5	C214	Design & Analysis of Machine Components*	4	2	-	60	40	25	25	-	150	4	1	-	5
6	C215	Solid Modelling	-	2	-	-	-	25	-	-	25		1	-	1
7	C216	Vocational Course-II ^{\$}	-	2	-	-	-	25	25	-	50	-	1	-	1
	Total		18	12	1	300	200	150	100	00	750	18	6	1	25
8	C217	MOOC-I**	-	-	-	-	-	-	-	-	-	-	-	-	2

#: Based on TW & internal oral examination; @Industry Taught Course-II; \$ PLC, HMI & Automation: Advanced Training; ** Add on Course

Sr.	Course	Name of Course	Teaching Scheme (Hrs./Week)				Exa	minatio	n Scheme	(Marks)	Credits				
No.	Code	Name of Course	L	Р	Т	ESE	IA	TW	OR	PR	Total	L	Р	Т	Total
1	C301	Signals and Systems [@]	4	2	-	60	40	25#	-		125	4	1	-	5
2	C302	Robot Kinematics & Dynamics	3	2	1	60	40	25	25	-	150	3	1	1	5
3	C303	Manufacturing Technology- II	4	2	-	60	40	25	25	-	150	4	1	-	5
4	C304	Electrical Control Systems	3	2	-	60	40	25#	-	-	125	3	1	-	4
5	C305	Introduction to Finite Element Analysis*	4	2	-	60	40	25	-	25	150	4	1	-	5
6	C306	Vocational Course-III ^{\$}	-	2	-	-	-	25	25	-	50	-	1	-	1
		Total	18	12	1	300	200	150	75	25	750	18	6	1	25
7	C307	Environmental Study+	2	-	-	50	-	-	-	-	50	-	-	-	-
8	C308	Social Activity-II **	-	-	-		-	-	-	-	-	-	-	-	2

B. Tech. (Robotics & Automation) Sem.-V

#: Based on TW & internal oral examination ; @Industry Taught Course-III; \$ Mounting and Communication of Sensors; +Mandatory Audit course; ** Add on Course

B. Tech. (Robotics &Automation) Sem.-VI

Sr.	Course	Name of Course	Teaching Scheme (Hrs./Week)				Exa	minatio	n Scheme	(Marks)		Credits				
No.	Code		L	Р	Т	ESE	IA	TW	OR	PR	Total	L	Р	Т	Total	
1	C309	Electro Hydraulics and Pneumatics [@]	4	2	-	60	40	25	25	-	150	4	1	-	5	
2	C310	Robotic Simulation	3	2	-	60	40	25#	-	-	125	3	1	-	4	
3	C311	Instrumentation for Robotics & Automation	4	2	-	60	40	25	25	-	150	4	1	-	5	
4	C312	Quantitative Techniques, Communication and Values	3	-	-	60	40	-	-	-	100	3	-	-	3	
5	C313	Artificial Intelligence and Neural network for Robots	3	-	1	60	40	25#	-	-	125	3	-	1	4	
6	C314	Vocational Course-IV ^{\$}	-	2	-	-	-	25	25	-	50	-	1	-	1	
7	C315	Robotic Programming-I	2	2	-	-	-	25	-	25	50	2	1	-	3	
	Total		19	10	1	300	200	150	75	25	750	19	5	1	25	
8	C316	MOOC-II**	-	-	-	-	-	-	-	-	-	-	-	-	2	

#: Based on TW & internal oral examination ; @Industry Taught Course-IV; \$ Troubleshooting and Maintenance of Robots; ** Add on Course

B. Tech.	(Robotics	&Automation)	SemVII
----------	-----------	--------------	--------

Sr.	Sr. Course		Teaching Scheme (Hrs./Week)		Examination Scheme (Marks)						Credits				
No.	Code	Name of Course	L	Р	Т	ESE	IA	TW	OR	PR	Total	L	Р	Т	Total
1	C401	Advanced Robotics	3	2	1	60	40	25	25	-	150	3	1	1	5
2	C402	Elective-I	3	2	-	60	40	25	-	-	125	3	1	-	4
3	C403	Industrial Internet of Things	4	2	-	60	40	25	25	-	150	4	1	-	5
4	C404	Future Factory (FMS)@	3	2	-	60	40	25#	-	-	125	3	1	-	4
5	C405	Robotic Programming-II		2	-	-	-	25	25	-	50	-	1	-	1
6	C406	Project Stage-I	-	2	-	-	-	50	50	-	100	-	3	-	3
7	C407	Internship***	-	-	-	-	-	25	25	-	50	-	3	-	3
		Total	13	12	1	240	160	200	150	-	750	13	11	1	25

#: Based on TW & internal oral examination ; @Industry Taught Course-V; *** Period of 60 days

B.	Tech.	(Robotics	&	Automation)	SemVIII
----	-------	-----------	---	-------------	---------

Sr.	Course		Teaching Scheme (Hrs./Week)		Examination Scheme (Marks)						Credits				
No.	Code	Name of Course	L	Р	Т	ESE	IA	TW	OR	PR	Total	L	Р	Т	Total
1	C408	Totally Integrated Automation	4	2	-	60	40	25	-	-	125	4	1	-	5
2	C409	Elective-II	3	2	-	60	40	25	-	-	125	3	1	-	4
3	C410	Industrial Engineering & Management	3	-	-	60	40	-	-	-	100	3	-	-	3
4	C411	Field & Service Robots [@]	3	-	1	60	40	-	-	-	100	3	-	1	4
5	C412	Mobile Robots & Drone Technology	-	2	-	-	-	25	25	-	50	-	1	-	1
6	C413	Design of Integrated Robotic Cells	-	4	-	-	-	25	25	-	50	-	2	-	2
7	C414	Project Stage-II	-	4	-	-	-	100	100	-	200	-	6	-	6
		Total	13	14	1	240	160	200	150	-	750	13	11	1	25
8	C415	Research Paper Publication**	-	-	-	-	-	-	-	-	-	-	-	-	2

#: Based on TW & internal oral examination ; [@]Industry Taught Course-VI, Social Activities-Additional Credit Course; ** Add on Course

Elective-I: Six Sigma, Lean & Agile Manufacturing, Engineering Economics, Augmented Reality & Virtual Reality, Operations Research Elective-II: Industrial Product Design, Project Management & Ethics, Additive Manufacturing & Rapid Prototyping, Image Processing

Sem VII ADVANCED ROBOTICS (Course No. C 401)

Designation of Course Advanced Robotics					
Teaching Scheme:	Examination Schem	Credits Allotted			
Theory: - 03 Hours/Week	End Semester Examination	60	03		
Practical: 02 Hours/Week	Internal Assessment	40	01		
Tutorial : 01 Hours/Week	Term Work	25 Marks	01		
	Oral		01		
	Total	150 Marks	05		

Course	1. Basics of Robotics					
Prerequisites: -	2. Data Storage System					
-	3. Applied Mechanics					
Course	To provide knowledge about					
Objectives: -	1.Robotic machine used in smart manufacturing					
, v	2.Data storage and capturing techniques					
	3. Robotics application in Smart manufacturing					
Course	The students should be able to					
Outcomes: -	1. To Understand Smart Material Handling Technologies					
	2. To Understand Data Storage and Capturing system					
	3. To Select Industrial Manipulator for application					
	4. To Design Robot End Effector					
	5. To Understand robot application in Manufacturing					
	6.To Understand Advanced robot application					

Unit-I	Introduction to Smart Material handling Techniques 08 Hrs.							
Principles of	Principles of Smart Material Handling, Design consideration for smart storage system, Unit load							
concept, Mat	erial Handling equipment, Material transport systems: AGVs, Mono	orails, Conveyor						
systems, Crai	nes and hoists, Analysis of material transport systems: Charting techni	que, analysis of						
vehicle-based	l systems, Conveyor analysis							
Unit-II	Storage and Data Capturing Systems	08 Hrs.						
Conventional	storage methods and equipment's Storage system performance, Ana	lysis of						
Automated st	orage/retrieval systems (ASRS) and Carousel Storage system.							
Automatic d	ata capturing system (ADC), Bar coding, Radio frequency identifi	cation (RFID),						
Optical chara	cter recognition, Magnetic stripes							
Unit-IIIIndustrial Robot08 Hrs.								
Types of ind	Types of industrial robots, Load handling capacity, general considerations in Robotic material							
handling, ma	handling, material transfer, machine loading and unloading, CNC machine tool loading, Robot							
cantered cell.								
Unit-IVEnd Effector Design08 Hrs.								
Classification, Design consideration, Materials for hostile operation. Cylindrical Cam type; Grippers using pneumatic, hydraulic, and electrical motor for transmission; Vacuum Grippers, Ultrasonic grippers. Gripper force analysis and gripper design, design of multiple degrees of								

freedom, active and passive grippers. Selection of Robot: Factors influencing the choice of a robot,
robot performance testing, economics of robotization, Impact of robot on industry and society.Unit-VApplication of Robots in Smart Manufacturing08 Hrs.Pick and place Robot, Application of Robots in Arc Welding Robots, Assembly and mega-assembly
Robots continuous arc welding, Spot welding, Spray painting, assembly operation,
Other industrial applications: Coating, Deburring, cleaning, Die Casting, Molding, Material
handling, Picking, Palletizing, Packaging
Robots For Inspection: Robotic vision systems, image representation, object recognition and
categorization, depth measurement08 Hrs.Unit-VIAdvanced Application of Robots08 Hrs.

Military and medical applications, robot for underwater applications Robots, Climbing Robots, Machine mounted Robots. Interfacing Robots with computers. Obstacle Avoidance: Lee's Algorithm; Counter Path Defining using 'via' point, blending.

Term Work:

Term work shall consist record of minimum 8 experiments from the following.

- 1. Study of Smart Material handling systems with any Simulation tool
- 2. Demonstration of Flexible Manufacturing System for various application
- 3. Study and analysis of Storage and Data capturing systems
- 4. Study of different Industrial Robot application with any Simulation tool
- 5. Demonstration of pick and place application by industrial robot
- 6. Study and analysis of robot grippers (includes the problems based on gripper force)
- 7. Case Study on advanced industrial applications of robots
- 8.Case Study of Medical robot
- 9. Case Study of robot for any Military application

Project Based Learning: -

- 1. To Prepare prototype of smart manufacturing for various machining operation
- 2. To prepare prototype of FMS
- 3. To prepare chart/poster of Flexible Manufacturing system
- 4. To prepare chart/poster of data storage and capturing system
- 5. To prepare Barcode reader robotic manipulator
- 6. To prepare model of robot manipulator interfacing with prototype of CNC
- 7. To design and prepare protype of robot manipulator with any type of gripper
- 8. To prepare prototype model of robot for any military application

Textbooks:

1. M.P. Groover, "Automation, Production Systems & Computer Integrated Manufacturing", PHI, 3rd Edition, 2012.

2. M.P. Groover, M.Naegel, "Industrial Robotics, Technology, Programming & Applications", TMH,2nd Edition, 2012.

3. S.K.Saha "Introduction to Robotics", The McGraw Hills company.

References Books:

- Deb S.R., "Robotics", Tata McGraw Hill Publications, New Delhi. ISBN 13: 9780070077911
- 2. Yoram Koren, & quot; Robotics for Engineers", McGraw Hill Book Co. ISBN-10: 0070353999
- Fu K.S., Gonzalex R.C., Lee C.S.G., "Robotics Control Sensing, Vision and intelligence", McGraw Hill Book Co. ISBN 10: 0070226253 / ISBN 13: 9780070226258
- 4. Todd D.J., "Fundamentals of Robot Technology", Wiley Publications, ISBN:978-0-470-20301-9

Unit Test

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

EI-I SIX SIGMA, LEAN & AGILE MANUFACTURING (Course No. C 402.1)

Designation of Course	Six sigma, Lean & Agile Manufacturing			
Teaching Scheme	Examination Scheme Credits		Credits Allotted	
Theory: - 3 Hours/ Week	End Semester Examination	60	03	
Practical: - 02 Hours/ Week	Internal Assessment	40	01	
	Term Work	25 Marks		
	Total	125 Marks	04	

Course	Student should have knowledge of	
Prerequisites:	1. Students should have Basic knowledge of Industrial Engineering.	
-	2. Students should have Basic knowledge of Statistics	
	Student should be able to	
Course	1. Use of six sigma technique to reduce variation	
Objectives: -	2. Use of Lean manufacturing for process improvement	
	3. Use of Agile manufacturing	
	Learner will be able to	
	1. Understand and work with the Lean manufacturing process	
	2. Understand and work with the Agile Production System	
Course	Course3. Management in the Agile Organization.	
Outcomes: -	Defines: - 4. Understand basic statistical processes.	
	5. Understand and calculate the six sigma levels	
	6. Understand and work with the DMAIC process	

Unit 1 Lean Manufacturing 06 Hrs	5.	
Origin and objectives of lean manufacturing, 3M concept, study of Ford and Toyota Product	ion	
system, Just in Time (JIT) manufacturing, lean building blocks.		
Value Creation and Waste elimination, seven types of waste, pull production, different models	of	
pull production, Kanban system, design of Kanban quantities, Kaizen, tools for continue	ous	
improvement.		
The value stream-benefits, mapping process. Current state maps-mapping icons, mapping ste	ps.	
VSM exercise. Takt time calculations standardize work- standard work sequence, timing and		
working progress		
Quality at source-Automation/Jidoka, Visual management system, Mistake Proofing/Poka-		
Yoke.5s technique-Elements and waste elimination through 5s. advantages and benefits, 5s audit,		
Visual control aids for improvements, Flexible work force.		
Unit 2 Agile Production system and Practices 06 Hrs	2	
Agile production system-the task allied organization-production planning and control, quality assurance, purchasing maintenance, overview of production support, business operations,		
engineering, finance and accounting. Agile Practices-Agile practice for product development,		
manufacturing Agile practice, understanding the value of investment in people.	,	

Unit 5 Management in the Agne Organization	Unit 3	Management in the Agile Organization
--	--------	--------------------------------------

Old management styles, role of management in agile organization-vision champion, team leader, coach, business analyzer, supporting the new culture-performance appraisal system, selection system, reward and recognition system, organizational measurement, organizational learning processes.

Unit 4 Statistics and probability distribution

Basic statistics, probability distributions, normal distribution, central limit theorem, measurement system analysis – precision, accuracy, bias, linearity, gage repeatability & reproducibility. Process capability analysis.

Multi-Variate analysis, sampling techniques, Hypothesis testing, testing with normal data, One Way ANOVA, nonparametric tests for non-normal data. Chi-square tests

Introduction to Six Sigma Unit 5

Six Sigma Defined, Calculating the Sigma Level – Toolset, Six Sigma Framework, DMAIC – The Six Sigma Improvement Process, Introduction to Measure, Introduction to Define, Process Thinking, Spaghetti Charts, Value Stream Mapping Toolset, Pareto Chart Toolset, Project Selection Toolset, Project Charter Toolset

Unit 6 Six Sigma in manufacturing

Introduction to Measure, Measurements, Discrete vs. Continuous Measurements, Measurement Subjects, Measurement as a Process, The Analysis of Measurement Systems, Statistical Process Control - Introduction and Background, Introduction to Control Charts, Control Chart Limits, More On Control Limits, Cause & Effect Diagram Toolset, Introduction to Hypothesis Testing, The Process on Trial, The Hypothesis – Accept or Reject, Types of Error, Hypothesis Testing, Confidence Intervals, Design of Experiments, Design for Six Sigma (DFSS), Benchmarking, **Brainstorming**

Term Work:

- 1. Case study on Just in Time system
- 2. Case study on Toyota production system
- 3. Case study on Kanban and Kaizen production system
- 4. Case study on Management in the Agile Organization
- 5. To find the Process capability.
- 6. Application of Chi-square tests
- 7. Case study on Sigma level calculations.
- 8. Case study on design of Experiment.

Project Based Learning

- 1. Chart preparation showing different methods of waste elimination.
- 2. Chart preparation for showing the various elements of JIT system.
- 3. Study of a system based on value stream mapping.
- 4. Demonstration of elimination of waste using 5S system.
- 5. Demonstration of Cause and effect diagram for a system.
- 6. Demonstration of control charts for a system.
- 7. Study of system using Six sigma for reduction in variation.
- 8. Formulation of Hypothesis, testing and analysis.

06 Hrs.

06 Hrs.

06 Hrs.

06 Hrs.

Textbooks:

- 1. Jain R. K., "Engineering Metrology", Khanna Publishers
- 2. Hume K. J., "Engineering Metrology", Macdonald, 1950
- 3. Sharp K. W. B., "Practical Engineering Metrology", Pitman Publication, 1970.

Reference Book:

- 1. Productions and Operations Management Chasel Aquilino Dreamtech latest edition.
- Toyota Production System An integrated approach to Just in Time Yasuhiro Monden Engineering and Management Press - Institute of Industrial Engineers Norcross Georgia-1983.
- 3. The Machine that changed the World. The Story of Lean Production James P Womack Daniel T Jones and Daniel Roos -Harper Perennial edition published 1991.
- 4. Lean Thinking James Womack ISBN 0743249275 2003.
- 5. Japanese Manufacturing Techniques. The Nine Hidden Lessons by simplicity Richard Stumberger ASQC Press 1991.
- 6. Quality Function Development James Bossert ASQC Press 1991.

Unit Test -

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

El-I Engineering Economics

Designation of CourseEngineering Economics (Elective -I)				
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	- 03	
Tutorial:Hours/ Week	Internal Assessment	40 Marks	05	
Practical: - 02 Hours/ Week	Term Work	25 Marks	- 01	
	Oral/Practical	Marks	01	
	Total	125 Marks	04	

Course Prerequisites: - Course Objectives: -	The students should have knowledge of Basic of Mathematics Students will be able to understand the economics behind running a	
	successful engineering project	
Course Outcomes: -	Student should be able to	
	 Understand the basic concepts of economics any apply them for selection and planning Understand time value of money and calculate the value of money at any given time in a project Understand Basic Methodologies of Engineering Economic Analysis and use them to for selection of project Use various methods to compare two different projects to check their viability Use replacement analysis for panning and changing of resources in a project Plan for Depreciation and Corporate Income Taxes 	

Course Contents

Unit 1	Introduction to Economics	(06 Hrs.)
Introducti	on to Economics- Flow in an economy, Law of supply and demand, Concept of l	Engineering
Economic	s - Engineering efficiency, Economic efficiency, Scope of engineering e	conomics –
Element	of costs, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost,	Break-even
analysis –	V ratio, Elementary economic Analysis – Material selection for product Desig	gn selection

for a product, Process planning.
Unit 2 Interest and Time Value of Money

Introduction to Time Value of Money; Simple Interest; Compound Interest; Nominal Interest rate; Effective Interest rate; Continuous Compounding; Economic Equivalence; Development of Interest Formulas; The Five Types of Cash flows; Single Cash flow Formulas; Uneven Payment Series; Equal Payment Series; Linear Gradient Series; Geometric Gradient Series.

Unit 3	Basic Methodologies	of Engineering Economic Ana	alysis
--------	----------------------------	-----------------------------	--------

(06 Hrs.)

Minimum Attractive (Acceptable) Rate of Return (MARR); Payback Period Method; Equivalent Worth Methods: Present Worth Method, Future Worth Method, Annual Worth Method; Rate of Return Methods: Internal Rate of Return Method; External/Modified Rate of Return Method; Public

(06 Hrs.)

Sector Economic Analysis (Benefit Cost Ratio Method); Introduction to Lifecycle Costing; Introduction to Financial and Economic Analysis

(06 Hrs.)

(06 Hrs.)

Unit 4 Comparative Analysis of Alternatives

Comparing Mutually Exclusive Alternatives having Same useful life by

1. Payback Period Method and Equivalent Worth Method

2.Rate of Return Methods and Benefit Cost Ratio Method

Comparing Mutually Exclusive Alternatives having different useful lives by

1. Repeatability Assumption 2. Co-terminated Assumption 3. Capitalized Worth Method

Comparing Mutually Exclusive, Contingent and Independent Projects in Combination.

Unit 5 Replacement Analysis

Fundamentals of Replacement Analysis: Basic Concepts and Terminology; Approaches for Comparing Defender and Challenger; Economic Service Life of Challenger and Defender Replacement Analysis When Required Service Life is Long: Required Assumptions and Decision Framework; Replacement Analysis under the Infinite Planning Horizon; Replacement Analysis under the Finite Planning Horizon

Unit 6Depreciation and Corporate Income Taxes(06 Hrs.)

Concept and Terminology of Depreciation; Basic Methods of Depreciation: Straight line method, Declining Balance Method, Sinking Fund Method, Sum of the Year Digit Method, Modified Accelerated Cost Recovery System (MACRS); Introduction to Corporate Income Tax; After Tax Cash flow Estimate; General Procedure for Making After Tax Economic Analysis.

Term Work

- 1. Completing a break even analysis of a company
- 2. Calculation of time value of money
- 3. Calculating the feasibility of a project by economic analysis
- 4. Comparing Mutually Exclusive Alternatives having Same useful life by Payback Period Method and Equivalent Worth Method
- 5. Comparing Mutually Exclusive Alternatives having Same useful life by Payback Rate of Return Methods and Benefit Cost Ratio Method
- 6. Comparing Mutually Exclusive Alternatives having different useful lives
- 7. Replacement analysis of a machine
- 8. Calculation of depreciation of a machine
- 9. Calculation of corporate taxes.

Project Based Learning

- 1. Case study on break even analysis of a company
- 2. Case study on Calculation of time value of money
- 3. Case study on feasibility of a project by economic analysis
- 4. Case study on Comparing Mutually Exclusive Alternatives having Same useful life by Payback Period Method and Equivalent Worth Method
- 5. Case study on Comparing Mutually Exclusive Alternatives having Same useful life by Payback Rate of Return Methods and Benefit Cost Ratio Method
- 6. Case study on Comparing Mutually Exclusive Alternatives having different useful lives
- 7. Case study on Replacement analysis of a machine
- 8. Case study on Calculation of depreciation of a machine
- 9. Case study on Calulation of corporate taxes.

Textbooks

- 1. R. Paneerselvem, Engineering Economics, Prentice Hall India.
- 2. M.P. Groover, "Automation, Production Systems & Computer Integrated Manufacturing", PHI, 3rd Edition, 2012.

Reference Books

- 1. Chan S. Park, Contemporary Engineering Economics, Prentice Hall, Inc.
- 2. E. Paul De Garmo, William G. Sullivan and James A. Bonta delli, Engineering Economy, MC Milan Publishing Company.
- 3. James L. Riggs, David D. Bedworth and Sabah U. Randhawa, Engineering Economics, Tata MCGraw Hill Education Private Limited.

Unit Test-I	Unit- I,II, III
Unit Test-II	Unit- IV, V, VI

Designation of Course Augmented and Virtual Reality			
Teaching Scheme:	Examination Scheme:	Examination Scheme: Credits Allotted	
Theory: - 03Hours/ Week	End Semester Examination	60 Marks	03
Practical: - 02 Hours/ Week	Internal Assessment	40 Marks	
	Term Work	25 Marks	01
	Total	125 Marks	04

EI-I ARGUMENTED AND VIRTUAL REALITY (Course No. C 402.3)

Course Prerequisites: -	Companion Course, if any: Virtual Reality Lab
Course Objectives: -	This course is designed to give historical and modern overviews and perspectives on virtual reality. It describes the fundamentals of sensation, perception, technical and engineering aspects of virtual reality systems.
Course Outcomes: -	 The students should be able to– Describe how VR systems work and list the applications of VR. Understand the design and implementation of the hardware that enables VR systems to be built. Understand the Geometry of Virtual Worlds & The Physiology of Understand the Geometry of Virtual Worlds & The Physiology of Understand the Geometry of Virtual Worlds & The Physiology of Understand the Geometry of Virtual Worlds & The Physiology of Understand the Geometry of Virtual Worlds & The Physiology of Understand the Geometry of Virtual Worlds & The Physiology of Understand the Geometry of Virtual Worlds & The Physiology of Understand the Geometry of Virtual Worlds & The Physiology of Understand the Geometry of Virtual Worlds & The Physiology of Virtual Worlds & The Ph
	 Human Vision. Understand the system of human vision and its implication on perception and rendering. Explain the concepts of motion and tracking in VR systems. Describe the importance of interaction and audio in VR systems.

Unit I	Introduction to Virtual Reality	(06Hrs.)
Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of		
Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input &		
output-Visu	al, Aural & Haptic Displays, Applications of Virtual Reality.	
Unit II	Representing the Virtual World	(06 Hrs.)
Representat	ion of the Virtual World, Visual Representation in VR, Aural Represent	tation in VR
and Haptic l	Representation in VR	
Unit III	The Geometry of Virtual Worlds & The Physiology of Human	
Unit III	Vision	(06 Hrs.)
Geometric N	Models, Changing Position and Orientation, Axis-Angle Representations	of Rotation,
Viewing Transformations, Chaining the Transformations, Human Eye, eye movements &		
implications	s for VR.	
Unit IV	Visual Perception & Rendering	(06 Hrs.)
Visual Perception - Perception of Depth, Perception of Motion, Perception of Color, Combining		
Sources of Information Visual Rendering -Ray Tracing and Shading Models, Rasterization,		
Correcting Optical Distortions, Improving Latency and Frame Rates		

Unit V	Motion & Tracking	(06 Hrs.)	
	Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in the Virtual World, Mismatched Motion and Vection Tracking- Tracking 2D & 3D Orientation,		
Tracking Po	sition and Orientation, Tracking Attached Bodies		
Unit VI	Interaction & Audio	(06 Hrs.)	
Interaction -	Motor Programs and Remapping, Locomotion, Manipulation, Social	Interaction.	
Audio-The	Physics of Sound, The Physiology of Human Hearing, Auditory Perception	on, Auditory	
Rendering.			

Term Work

- 1. Installation of Unity and Visual Studio, setting up Unity for VR development, understanding documentation of the same.
- 2. Study and demonstration of depth perception.
- 3. Study and demonstration of skeleton tracking for various application
- 4. Demonstration of the working of HTC Vive, Google Cardboard, Google Daydream and Samsung gear VR.
- 5. Develop a scene in Unity that includes a cube and apply transformations on the 3 game objects.
- 6. Develop a scene in Unity that includes a plane and apply transformations on the 3 game objects
- 7. Develop a scene in Unity that includes a sphere and apply transformations on the 3 game objects
- 8. Develop a scene in Unity that includes a video source
- 9. Develop a scene in Unity that audio source.

Project Based Learning

- 1. Study the use of Virtual Reality at NASA
- 2. GHOST (General Haptics Open Software Toolkit) software development toolkit.
- 3. Sweeping coverage of eye movements
- 4. Automatic stitching of panoramas in Virtual Reality
- 5. A virtual Study Use Case- NICE, An Educational Experience
- 6. Side effects of using VR systems/ VR sickness.

Text Books

- 1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016
- Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002
- 3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009.

Reference Books

- Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.
- 2. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.
- 3. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and

Virtual Worlds", 2005.

4. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003

Unit Test-I	Unit-I,II, III
Unit Test-II	Unit-IV, V, VI

EI-I OPERATIONS RESEARCH

Designation of Course	Operations Research		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Lectures: - 03 hours/Week	End Semester	60 Marks	
	Examination	00 Iviai KS	3
Practical: - 02 hours/Week	Internal Assessment	40 Marks	
	Term Work	25 Marks	1
	Practical	-	-
	Total	125 Marks	4

(Course No. C 402.4)

Course Prerequisites:	Good knowledge of mathematics.
Course Objective: -	The students will be able to understand various models in operations
	research used in industries to solve problems
Course Outcomes	As a part of this course, students will:
	1. Understand OR problem and associated models.
	2. Understand Linear Algebra.
	3. Use transportation and assignment problems.
	4. Use PERT for modelling.
	5. Use Inventory Control System.
	6. Apply queuing theory and modulation techniques.

Course Contents
Unit 1Introduction to Operation Research(06 Hrs.)
Origin of OR and its definition. Concept of optimizing performance measure, Types of OR
problems, Deterministic vs. Stochastic optimization, Phases of OR problem approach - problem
formulation, building mathematical model, deriving solutions, validating model, controlling,
and implementing solution.
Unit 2Linear Programming:(06 Hrs.)
Linear programming – Examples from industrial cases, formulation & definitions, Matrix form.
Implicit assumptions of LPP.
Some basic concepts and results of linear algebra - Vectors, Matrices, Linear
Independence/Dependence of vectors, Rank, Basis, System of linear eqns., Hyperplane, Convex
set, convex polyhedron, Extreme points, Basic feasible solutions.
Geometric method: 2-variable case, Special cases – infeasibility, unboundedness, redundancy
& degeneracy, Sensitivity analysis.
Simplex Algorithm – slack, surplus & artificial variables, computational details, big-M method,
identification, and resolution of special cases through simplex iterations.
Duality – formulation, results, fundamental theorem of duality, dual-simplex and primal-dual
algorithms.
Unit 3Transportation and Assignment problems:(06 Hrs.)
TP - Examples, Definitions - decision variables, supply & demand constraints, formulation,
Balanced &
unbalanced situations, Solution methods – NWCR, minimum cost and VAM, test for optimality
(MODI method), degeneracy and its resolution.
AP - Examples, Definitions – decision variables, constraints, formulation, Balanced & unbalanced situations,
Currounaneed Stations,

	ethod – Hungarian, test for optimality (MODI method), degeneracy & it	
Unit 4	PERT – CPM:	(06 Hrs.)
Project de	finition, Project scheduling techniques - Gantt chart, PERT & CPM, De	etermination
of critical	paths, Estimation of Project time and its variance in PERT using statistica	l principles,
Concept of	f project crashing/time-cost trade-off.	
Unit 5	Inventory Control	(06 Hrs.)
Functions	of inventory and its disadvantages, ABC analysis, Concept of inventory of	costs, Basics
of invento	ry policy (order, lead time, types), Fixed order-quantity models - EG	DQ, POQ &
Quantity d	iscount models. EOQ models for discrete units, sensitivity analysis and	Robustness,
Special ca	ses of EOQ models for safety stock with known/unknown stock out situat	ions, models
under pres	cribed policy, Probabilistic situations.	
Unit 6	Queuing Theory	(06 IIm_{3})
		(06 Hrs.)
Definition	s – queue (waiting line), waiting costs, characteristics (arrival, que	· · · · ·
		· · · · ·
discipline)	s – queue (waiting line), waiting costs, characteristics (arrival, que	ue, service
discipline) Kendall's	s – queue (waiting line), waiting costs, characteristics (arrival, que of queuing system, queue types (channel vs. phase).	ue, service Models with
discipline) Kendall's examples	s – queue (waiting line), waiting costs, characteristics (arrival, que of queuing system, queue types (channel vs. phase). notation, Little's law, steady state behavior, Poisson's Process & queue,	ue, service Models with
discipline) Kendall's examples description	s – queue (waiting line), waiting costs, characteristics (arrival, que of queuing system, queue types (channel vs. phase). notation, Little's law, steady state behavior, Poisson's Process & queue, - M/M/1 and its performance measures; M/M/m and its performance me	ue, service Models with
discipline) Kendall's examples description Simulatio	s – queue (waiting line), waiting costs, characteristics (arrival, que of queuing system, queue types (channel vs. phase). notation, Little's law, steady state behavior, Poisson's Process & queue, M/M/1 and its performance measures; M/M/m and its performance me a about some special models.	ue, service Models with asures; brief
discipline) Kendall's examples description Simulatio Definition	 s – queue (waiting line), waiting costs, characteristics (arrival, que of queuing system, queue types (channel vs. phase). notation, Little's law, steady state behavior, Poisson's Process & queue, M/M/1 and its performance measures; M/M/m and its performance measures about some special models. n Methodology: 	ue, service Models with asures; brief screte Event

Term work

Term work shall consist of any eight programs described in syllabus and listed below.

- 1. Solution of linear programming problem using graphical method
- 2. Solution of linear programming problem with simplex method.
- 3. Problem solving using Big M method.
- 4. Problem solving using two phase method.
- 5. Solution of transportation problem.
- 6. Solution of assignment problem.
- 7. Identification of project duration using CPM
- 8. Finding probabilities of project completions using PERT
- 9. Performance measures for M/M/1 queuing model.
- 10. Determination of various inventory cost using inventory model.

List of Project Based Learning Topics:

- 1. Students must work on one of the projects listed below (but not limited to) during the semester.
- 2. Find the companies that used OR as a tool to sort a problem successfully and unsuccessfully. Compare them and analyse as to why certain strategies worked and others failed.
- 3. Visit any industry and choose one of their products. Develop a LPP for maximizing profits on the sale of that product considering the various constraints on it. Solve the LPP and make suggestions of the same for the company.
- 4. Develop a software that helps in making timetable for the department by making and solving an LPP.
- 5. Visit a small departmental store/hotel, collect data, and make an LPP for optimum use of space. Solve the LPP and make relevant suggestions.

- 6. Write a research paper on how LPP helps companies to solve problems referencing latest papers.
- 7. Write a research paper on how assignment tools help companies to solve problems referencing latest papers.
- 8. Write a research paper on how transportation tools help companies to solve problems referencing latest papers.
- 9. Visit a small-scale industry. Collect data and make WBS and a network diagram. Solve it by CPS and PERT methods ad make relevant suggestions.
- 10. Write a research paper on how network analysis tools help companies to solve problems referencing latest papers.
- 11. Write a research paper on how queuing models help companies to solve problems referencing latest papers.
- 12. Go to a nearby petrol pump, bank, departmental store, hotel. Record the arrival and service rates for multiple day. Analyze the data and make relevant suggestions.
- 13. Write a research paper on how inventory models help companies to solve problems referencing latest papers.
- 14. Go to a nearby petrol pump, departmental store, hotel. Record inventory levels and inventory practices for multiple day. Analyze the data and make relevant suggestions.

Textbooks:

- 1. Operations Research: An Introduction. H.A. Taha.
- 2. Introduction to Operations Research. F.S. Hiller and G.J. Lieberman.
- 3. Principles of OR with Application to Managerial Decisions. H.M. Wagner.

Reference Books:

- 1. Linear Programming. K.G. Murthy.
- 2. Linear Programming. G. Hadley.
- 3. Elements of Queuing Theory. Thomas L. Saaty.
- 4. Operations Research and Management Science, Handbook: Edited by A. Ravi Ravindran.
- 5. Management Guide to PERT/CPM. Wiest& Levy.
- 6. Modern Inventory Management. J.W. Prichard and R.H. Eagle.

Unit Test-I	Unit-I,II, III
Unit Test-II	Unit-IV, V, VI

INDUSTRIAL INTRNET OF THINGS

Designation of Course	Industrial Internet of Thin	gs	
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory: - 4 Hours/ Week	End Semester Examination	60 Marks	4
Practical: - 2 Hours/ Week	Internal Assessment	40 Marks	4
	Term Work	25Marks	1
	Oral/Practical	25 Marks	1
	Total	150 Marks	5

(Course No. C 403)

Comman	Systems in Machanical Engineering Dreamming and Drahler Calving
Course	Systems in Mechanical Engineering, Programming and Problem Solving,
Prerequisites: -	Basic Electronics Engineering, Solid Mechanics, Solid Modeling and
	Drafting, Electrical and Electronics Engineering, Mechatronics,
	Measurement Laboratory, Fluid Power & Control Laboratory
Course Objectives:	1. Introduction to IoT, Overview of IoT Building Blocks
-	2. Build small applications in IoT for Mechanical Engineering
	Applications using Sensors, Actuators, Microcontrollers and Cloud
	3. Learn commonly used IoT Simulation Hardware platforms
	4. Understand different Communication Technologies used in IoT
	5. Development of application-level protocol and Security of IoT
	Ecosystem
	6. Understand IoT applications in different domains
Course Outcomes: -	On completion of the course the learner will be able to;
	1. EXPLAIN the Applications/Devices, Protocols and Communication
	Models of IoT
	2. DEMONSTARTE small Mechanical Engineering IoT oriented
	applications using Sensors, Actuators, Microcontrollers and Cloud
	3. SELECT commonly used IoT Simulation Hardware platforms
	4. APPLICATION of Interfacing and Communication Technologies for
	ІоТ
	5. ILLUSTRATE IoT Application Development and Security of IoT
	Ecosystem
	6. EVALUATE Present and Future Domain specific Applications of
	IoT Ecosystem

Unit I	Introduction to Industrial Internet of Things Systems	(08Hrs.)	
The Various	The Various Industrial Revolutions, Role of Internet of Things (IoT) & Industrial Internet of		
Things (IIoT)	Things (IIoT) in Industry, Industry 4.0 revolutions, Support System for Industry 4.0, Smart		
Factories.			
Unit II	Implementation System for IIoT	(08 Hrs.)	
Sensors and A	Actuators for Industrial Processes, Sensor networks, Process automation	n and Data	
Acquisitions on IoT Platform, Microcontrollers and Embedded PC roles in IIoT, Wireless Sensor		ess Sensor	
nodes with Bl	uetooth, WiFi, and LoRa Protocols and IoT Hub systems.		

Unit III	IIoT Data Monitoring & Control	(08 Hrs.)
IoT Gate way, IoT Edge Systems and It's Programming, PLC and Wi-Fi enabled system, Cloud		em, Cloud
computing, Real Time Dashboard for Data Monitoring, Data Analytics and Predictive		ctive
Maintenance	with IIoT technology.	
Unit IV	Cyber Physical Systems	(08 Hrs.)
Next Generat	ion Sensors, Collaborative Platform and Product Lifecycle Management	,
Augmented F	Reality and Virtual Reality, Artificial Intelligence, Big Data and Advanced	d Analysis
Unit V	Industrial IoT- Applications	(08 Hrs.)
Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security		
(Including Al	R and VR safety applications), Facility Management.	
Unit VI	Case Studies of IIoT Systems	(08 Hrs.)
IIoT application development with Embedded PC based development boards, Development of		
mini-Project on new version of Operating systems and Edge development board. That project		
should also address to the current societal needs		

Term Work

- 1. Study of various application of internet on things in industry
- 2. Demonstration of Electro-Hydraulic system for Data storage and optimization using IoT
- 3. Demonstration of Electro-Pneumatic system for Data storage and optimization using IoT
- 4. Demonstration of PLC based Traffic light control system for Data storage and optimization using IoT
- 5. Development of IoT Cloud for classroom monitoring and generation of graphical result
- 6. Demonstration of any health monitoring application using IoT tools
- 7. Demonstration of automated toll collection system (using FASTTAG).
- 8. Industrial visit to any relevant organization where IoT based tool is implemented.

Project Based Learning

Students have to prepare and submit a demonstration models based on above syllabus. Prepare a model/a chart/a case study based on following topic (Not limited to this)

- 1.Industrial Internet of Things in industry
- 2. Industrial Internet of Things system implementation element
- 3. IoT data Monitoring and control by PLC/Wi-Fi
- 4. Preductive maintenance in IIoT
- 5. Cyber physical system
- 6. IoT application for health care /Power plant/Quality control system

Text Books

- 1. daCosta, F., (2013), "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", Apress Publications, ISBN: 9781430257417
- 2. Waher, P., (2015), "Learning Internet of Things," Packt Publishing, ISBN: 9781783553532
- 3. Ovidiu, V. and Friess, P., (2014), "Internet of Things From Research and Innovation to Market Deployment," River Publishers, ISBN: 9788793102941,

- 4. Ida, N., (2020), "Sensors, Actuators and Their Interfaces," SciTech Publishers, ISBN: 9781785618352
- 5. Pfister, C., (2011), "Getting Started with the Internet of Things," O'Reilly Media, ISBN: 9781449393571

Reference Books

- Bahga, A. and Madisetti, V., (2015), "Internet of Things A Hands-on Approach," Universities Press, ISBN: 9788173719547
- 2. Hajjaj, S S H. and Gsangaya, K. R., (2022), "The Internet of Mechanical Things: The IoT Framework for Mechanical Engineers," CRC Press, ISBN: 9781032110950
- 3. Raj, P. and Raman, A. C., (2017), "The Internet of Things: Enabling Technologies, Platforms, and Use Cases," Auerbach Publications/CRC Press, ISBN:9781498761284
- 4. Adrian McEwen, A. and Cassimally, H., (2013), "Designing the Internet of Things," John Wiley and Sons, ISBN:
- 5. Veneri, G., Capasso, A., (2018), "Hands-On Industrial Internet of Things: Create a powerful Industrial IoT infrastructure using Industry 4.0," Packt Publishing, ISBN: 9781789537222
- Hersent, O, Boswarthick, D., Elloumi, O., (2012), "The Internet of Things: Key Applications and Protocols", Wiley, ISBN: 9781119994350
 Uckelmann, D., Harrison, M., Michahelles, F., (2011), "Architecting the Internet of Things," Springer, ISBN: 9781119994350

Unit Test-I	Unit-I,II, III
Unit Test-II	Unit-IV, V, VI

FUTUTE FACTORY

Designation of Course	Future Factory			
Teaching Scheme:	Examination Scheme:	Examination Scheme:		
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03	
	Internal Assessment	40 Marks	05	
Practical: - 02 Hours/ Week	Term Work	25 Marks	01	
	Total	125 Marks	04	

Course	The students should have knowledge of		
Prerequisites: -	1) Manufacturing Technology-I, II		
-	2) Automatic Control System		
	3) Electro-Hydraulic and Pneumatics		
	4) Power Electronics & Drives		
	5) Object Oriented Programming (Using Python)		
	6) Programmable Logic Controller		
Course Objectives: -	To provide Knowledge about		
	1. Modern manufacturing systems		
	2. To understand the concepts and applications of flexible		
	manufacturing systems		
	3. To introduce the concept of smart factories, especially the various		
	technologies involved within the smart manufacturing.		
	4. To introduce the applications and scope for technology involved		
	in Industry 4.0.		
Course Outcomes: -	The students should be able to-		
	1. Recognize the recent manufacturing trends related to Industry 4.0, FMS, and its implementation in manufacturing		
	2. Perform Planning, Scheduling, and control of Flexible Manufacturing		
	systems		
	3. Identify the role of cloud manufacturing for smart factories, challenges, and scope		
	4. Understand and apply the concept of agile manufacturing and cyber security in future factory		
	5. Identify applications of AR and VR in smart manufacturing.		
	6. Understand and apply the concept of digital twins in future factory		

Unit I	Introduction to smart manufacturing technologies	(06 Hrs.)		
Introducti	Introduction to Industry 4.0, Smart manufacturing, Related technologies, Traditional Factory and			
Smart Fac	Smart Factory, The Smart Factory Opportunity, CIM wheel, CIMS Structure and Functions, Future			
Trends of	Trends of smart Factory and applications. Introduction & composition of FMS, hierarchy of			
computer	computer control, computer control of work center and assembly lines, FMS supervisory computer			
control, ty	pes of software specification and selection.			
Unit II	Unit IIApplications of FMS and factory of the future(06 Hrs.)			
FMS appl	FMS application in machining, sheet metal fabrication, prismatic component production, aerospace			
application, FMS development towards factories of the future. Flexibility rules, Sustainability, Man				
in the factory, building blocks for the factory of the future, Building architecture and factory				
planning,	planning, IT Infrastructure and cyber security, Data Management, Machines and manufacturing			
systems.				

Unit III	Cloud Manufacturing and connected factory	(06 Hrs.)
Introduction to Cloud computing, Industrial Internet of Things, supply chain management, Big Data		
and Analytics, Big Data decision-making, , Automotive Cloud, warehouse operations, Augmented		
•	'irtualization, Cloud Platforms, Big data in production, Cloud-based ERP	and MES
	Connected factory applications, IT security for cloud applications.	
Unit IV	Agile Manufacturing and Safety with Future Factory	(06 Hrs.)
Implement Iteration,	anufacturing: Introduction to Agile Manufacturing, Agile Manufacturing at Agile Manufacturing, Applications of Agile Manufacturing, Real-Time Da Computer Vision to Augment Operators, Manufacturing Apps to Amplif Mass Customization.	ta to Guide
0	th Future Factory:	
•	on to cybersecurity, security principles, risk and opportunities in cybersecurity t	echnology,
Unit V	Virtual and Augmented Reality, Machine Learning in Industry 4.0	(06 Hrs.)
Introducti	on, Difference in AR and VR, Hardware and Software Technology, Industrial	
Application	ons of Augmented reality and Virtual reality. Basics of Machine Learning, Th	ne Machine
Learning	Process, Into Machine Learning working cycle, Preparing Data, Running Ex	xperiments,
Finding th	e Model, Training the Model, Deploying and using a Model, Machine Learning	g in practice
(examples	s of existing or future applications in the field of manufacturing)	
Unit VI	Digital Twins	(06 Hrs.)
Introducti	on to Digital Twins, Benefits, impact and challenges, Features and Implem	entation of
Digital T	wins, Computational tools, Types of Digital Twins, Applications for digit	al twins in
productio	n (examples of existing or future applications in the field of manufacturing),	digital twin
in dynami	cal systems, Data-driven digital twins, methods in digital twin technology, Dec	ep learning
in digital	twin technology.	
Town Wes	•	

Term Work

List of Practical /Term work: -

(Term work shall consists of minimum 8 experiments based on above syllabus)

- 1. Study of FMS/CIM/Industry 4.0 technology in smart manufacturing applications.
- 2. Study of different applications of FMS and factory of future
- 3. Case studied on cloud manufacturing
- 4. Study of Cloud-based ERP.
- 5. Study of Agile manufacturing in smart manufacturing applications
- 6. Study of cyber security and its different applications in future factory
- 7. Design and Simulation of process automation using simulation software
- 8. Study of integration of robotics system with CNC Machine
- 9. Study of factory simulation using simulation software
- 10. Industrial visit to Automation Factory

Project Based Learning

Students have to prepare and submit a demonstration models based on above syllabus.

Prepare a model/a chart/a case study based on following topic (Not limited to this)

- 1. FMS/CIM/Industry 4.0 technology
- 2. Smart manufacturing
- 3. Cloud-based ERP
- 4. Agile Manufacturing
- 5. Safety with Future Factory
- 6. Use of Virtual and Augmented Reality for industrial applications.
- 7. Machine Learning working cycle

- 8. Digital Twins
- 9. Cyber security for mechanical industry.

Textbooks

- 1. Deisenroth, Faisal, Ong, Mathematics for Machine Learning, Cambridge University Press,2020
- 2. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.
- Parag Kulkarni and Prachi Joshi, "Artificial Intelligence Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015
- 4. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003
- 5. Groover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India Pvt., New Delhi, 1996.
- 6. Kalpakjian, "Manufacturing Engineering and Technology", Addison-Wesley Publishsing Co., 1995.
- 7. Taiichi Ohno, "Toyota Production System: Beyond large-scale Production", Productivity Press (India) Pvt. Ltd. 1992.
- 8. Smid P., CNC Programming Handbook, Industrial Press, 2005

Reference Books

- 1. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.
- 2. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.
- 3. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.
- 4. Zsolt Nagy Artificial Intelligence and Machine Learning Fundamentals-Apress (2018)
- 5. Artificial Intelligence by Elaine Rich, Kevin Knight and Nair, TMHWeb
- 6. Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New AgeInternational Ltd., 1994.
- 7. Raouf, A. and Ben-Daya, M., Editors, "Flexible manufacturing systems: recent development", Elsevier Science, 1995.

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

(Course no. C 403)				
Designation of Course	Robotic Programming -	I		
Teaching Scheme:	Examination Scl	neme	Credits Allotted	
Theorem	End Semester			
Theory:	Examination			
Practical: 02 Hours/Week	Internal Assessment			
	Term Work	25 Marks	01	
	Oral	25 Marks	01	
	Total	50 Marks	01	

Robotic Programming -II (Course No. C 405)

Course	1 - C/C + Drogramming			
Course	1. C/C++ Programming			
Prerequisites: -	2. Python Programming			
-	3. Robot fundamentals			
	4. VAL/VAL-II Robot Programming			
Course	To provide knowledge about			
Objectives: -	1.Robot operating system 2			
	2.Robot Simulation Engines			
	3. Programming for path and motion planning			
Course	The students should be able to			
Outcomes: -	1. To Understand the basic principles of Robotics programming and			
	development.			
	2. To Learn Robot Simulation Engines			
	3. Design real world applications using available software.			
	4. Understand integration technologies and its applications			
	5. To Understand Mapping and SLAM			
	6. Identify problems in integrating the system / simulations / programming.			

Unit-I	Introduction to Robot Operating System 2 (RoS 2)	04 Hrs.		
Architectural overview of the Robot Operating System, Framework and setup with ROS2				
environment,	environment, ROS2 workspace structure, essential command line utilities. ROS2 nodes, topics,			
services, para	ameters, actions and launch files.			
Unit-II	Unit-IIRobot Simulation Engines04 Hrs.			
Physics simu	lations of Robots with Gazebo, Mujoco and Pybullet C++/Python API	s. Programming		
nodes, topics,	nodes, topics, services, actions with C/C++/Python. Real time programming with ROS2.			
Unit-III	Unit-IIIProgramming for Path Planning04 Hrs.			
Intro to Path	Planning and Navigation, Classic Path Planning, Number of classi	c path planning		
approaches th	hat can be applied to low-dimensional robotic systems. Coding the BFS	and algorithms		
in C++. Sam	in C++. Sample-Based and Probabilistic Path Planning and improvement using the classic			
approach. Pro	ogramming in Move it framework.			
Unit-IV	Unit-IVProgramming for Motion Planning04 Hrs.			
Use of EKF	Use of EKF ROS package to a robot to estimate its pose. Monte Carlo Localization:- The Monte			
Carlo Localization algorithm which uses particle filters to estimate a robot's pose. Build MCL in				
C++ :- Coding the Monte Carlo Localization algorithm in C++. Simultaneous Localization and				
Mapping (SLAM) implementation with ROS2 packages and C++. Combining mapping algorithms				
with the local	with the localization concepts.			

Unit-V	Mapping and SLAM	04 Hrs.	
Introduction	to the Mapping and SLAM concepts and algorithms. Occupancy	Grid Mapping:-	
Mapping an	Mapping an environment with the Occupancy Grid Mapping algorithm. Grid-based FastSLAM:-		
Simultaneous mapping an environment and localize a robot relative to the map with the Grid-based			
FastSLAM a	FastSLAM algorithm.		
Unit-VIIntroduction to Microros04 Hrs.			
Concepts of microros, Client library, features of microros, real time operating systems (RTOS- Free			

Term Work:

Term work shall consist record of minimum 8 experiments from the following.

RTOS, Zephyr), implementation of microros on ARM/ESP32 based microcontrollers.

- 1. Study of Nodes and Robot Operating system 2 (ROS 2) topic
- 2. Study of Services, actions in Robot Operating system 2 (ROS 2)
- 3. Mujoco and Gazebo Simulations through (ROS 2) programming
- 4. Simulation of 6-dof manipulator through program in ROS2
- 5. Simulation of autonomous vehicle (Mobile and field robots) through program in ROS2
- 6. Microros implementation on ESP32
- 7. Microros implementation on STM32L4
- 8. Motion planning with Moveit2 Discovery kit IoT

Textbooks:

- 1. Programming Robots with ROS, Morgan Quigley, Brian Gerkey, & William D Smart, SPD Shroff Publishers and Distributors Pvt Ltd., 2016
- 2.S.K. Saha "Introduction to Robotics", The McGraw Hills company.

References Books:

- 1. Learning ROS for Robotics Programming, Aaron Martinez, Enrique Fernandez, PACKT publishing, 2013
- 2. Mastering ROS for Robotics Programming: Design, build, and simulate complex robots using the Robot Operating System, Lentin Joseph, PACKT publishing, 2015

INTERNSHIP

(Course No. C 407)

Designation of Course	Internship			
Teaching Scheme:	Examination Scheme:	Examination Scheme:		
Theory: Hours/ Week	End Semester Examination	Marks		
Tutorial:Hours/ Week	Internal Assessment	Marks		
Practical: Hours/ Week	Term Work	25 Marks	03	
	Oral/Practical	25 Marks		
	Total	50 Marks	03	

Course	The students should have knowledge of	
Prerequisites: -	1. All courses up to B. Tech Semester VI.	
Course Objectives: -	 To expose technical student to the industrial environment. To provide possible opportunities to learn, understand, and sharpen the real time technical, managerial skills required at the job. To familiarize with various materials, processes, products and their applications along with relevant aspects of quality control. To acquaint the social, economic, and administrative considerations 	
Course Outcomes: -	that influence the working environment of industrial organization.The students should be able to-	
	 Understand the latest changes in technological world and apply fundamental principles of science and engineering. Create ability to identify, formulate and model problems and apply it to find engineering solutions based on a system approach. Understand importance of sustainability and cost-effectiveness in design and development of engineering solution. Create ability to be multi skilled engineer with a good technical knowledge, management, leadership, entrepreneurship skills. Create awareness of social, cultural, global, and environmental responsibility as an engineer. Create ability to communicate efficiently. 	

Course Contents

Introduction:

Internships are educational and career development opportunities, providing practical experience in a field or discipline. Internships are far more important as the employers are looking for employees who are properly skilled and having awareness about industry environment, practices, and culture. Internship is structured, short-term, supervised training often focused on tasks or projects with defined time scales. Core objective is to expose technical students to the industrial environment, which cannot be simulated/experienced in the classroom and hence creating competent professionals in the industry and to understand the social, economic and administrative considerations that influence the working environment of industrial organizations. Engineering internships are intended to provide students with an opportunity to apply theoretical knowledge from academics to the realities of the field work/training.

Duration:

Internship to be completed after semester 6 and before commencement of semester 7 of at least 8 weeks (60 Days); and it is to be assessed and evaluated in semester 7.

Internship work Identification:

Student may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/NGO's/Government organizations/Micro/Small/Medium enterprises to make themselves ready for the industry.

Contacting various companies for Internship and Internship work identification process should be initiated in the 6th semester in coordination with training and placement cell/ industry institute cell/ internship cell. This will help students to start their internship work on time. Also, it will allow students to work in vacation period after their 6th semester examination. Student can take internship work in the form of Online/onsite work from any of the following but not limited to:

- Working for consultancy/ research project,
- Participation at Events (Technical / Business)/in innovation related completions like Hackathon,
- Contribution in Incubation/ Innovation/ Entrepreneurship Cell/ Institutional Innovation Council/ startups cells of institute
- Development of new product/ Business Plan/ registration of start-up,
- Participation in IPR workshop/Leadership Talks/ Idea/ Design/ Innovation/ Business Completion/ Technical Expos,
- Industry / Government Organization Internship, Internship through Internshala,
- In-house product development, intercollegiate, inter department research internship under research lab/group,
- micro/small/medium enterprise/online internship.

[1] https://www.aicte-india.org/sites/default/files/AICTE%20Internship%20Policy.pdf

Internship Diary/ Internship Workbook:

Students must maintain Internship Diary/ Internship Workbook. The main purpose of maintaining diary/workbook is to cultivate the habit of documenting. The students should record in the daily training diary the day-to-day account of the observations, impressions, information gathered, and suggestions given, if any. The training diary/workbook should be signed after every day by the supervisor/ in-charge of the section where the student has been working. Internship Diary/workbook and Internship Report should be submitted by the students along with attendance record and an evaluation sheet duly signed and stamped by the industry to the Institute immediately after the completion of the training.

Internship Diary/workbook may be evaluated based on the following criteria:

• Proper and timely documented entries • Adequacy & quality of information recorded. • Data recorded. • Thought process and recording techniques used. • Organization of the information

Internship Work Evaluation:

The evaluation of these activities will be done by Cell In-charge/faculty mentor or Industry Supervisor based on Overall compilation of internship activities, evidence needed to assign the points and the duration for certain activities. Assessment and Evaluation is to be done in consultation with internship supervisor (Internal and External – a supervisor from place of internship.

Recommended evaluation parameters-Post Internship Internal Evaluation -25 Marks + Internship Diary/Workbook and Internship Report - 25 Marks

Evaluation through Seminar Presentation/Viva-Voce at the Institute

The student will give a seminar based on his training report, before an expert committee constituted by the concerned department as per norms of the institute. The evaluation will be based on the following criteria:

• Depth of knowledge and skills Communication & Presentation Skills • Teamwork • Creativity • Planning & Organizational skills • Adaptability • Analytical Skills • Attitude & Behavior at work • Societal Understanding • Ethics • Regularity and punctuality • Attendance record • Logbook • Student's Feedback from External Internship Supervisor.

After completion of Internship, the student should prepare a comprehensive report to indicate what he/she has observed and learnt in the training period. The student may contact Industrial Supervisor/

Faculty Mentor for assigning special topics and problems and should prepare the final report on the student's presence physically, if the student is found absent without prior intimation to the department/institute/concern authority, entire training can be cancelled.

The report shall be presented covering following recommended fields but not limited to,

• Title/Cover Page • Internship completion certificate • Internship Place Details- Company background-organization and activities/Scope and object of the study / personal observations • Index/Table of Contents • Introduction • Title/Problem statement/objectives • Motivation/Scope and rationale of the study • Methodological details • Results / Analysis /inferences and conclusion • Suggestions / Recommendations for improvement to industry, if any • Attendance Record • Acknowledgement • List of reference (Library books, magazines and other sources)

Feedback from internship supervisor (External and Internal)

Post internship, faculty coordinator should collect feedback about student with following recommended parameters: Technical knowledge, Discipline, Punctuality, Commitment, Willingness to do the work, Communication skill, individual work, Teamwork, Leadership, etc.

PROJECT STAGE -I

(Course No. C 406)

Designation of Course	Project Stage -I		
Teaching Scheme:	Examination Scheme:	Examination Scheme:	
Theory: Hours/ Week	End Semester Examination	Marks	
Tutorial:Hours/ Week	Internal Assessment	Marks	
Practical: - 02 Hours/ Week	Term Work	50 Marks	03
	Oral/Practical	50 Marks	03
	Total	100 Marks	03

Course	The students should have knowledge of	
Prerequisites: -	1. Knowledge of basic concepts in Robot Programing.	
	2. Basic information of fundamentals of robotics.	
	3. Basic knowledge of Data Structures and Algorithm.	
	4. Knowledge of basic concepts in Robotics & Automation Engineering.	
	5. Basic knowledge of robot design.	
Course Objectives: -	1. To identify problem for a specific need of an organization	
	2. To review literature on specific research topic	
	3. To make feasible, sustainable design	
	4. To work sincerely as a member of a team	
	5. To communicate ideas to supervisors as well as subordinates	
	6. To develop new equipment or make modifications in existing one	

Course Contents

Details of Project Stage -I

- 1. The formation of a project team with members having similar interest.
- 2. Discuss the ideas within the team members and choosing a faculty member interested in similar activity with the consent of the HOD. The projects can be on new equipment development, on industry sponsored problems or on research-oriented subjects.
- 3. Discuss the project with the faculty with the idea that projects selected are suitable for design and fabrication with the available resources.
- 4. First stage presentation with
 - Project Aim
 - Feasible design and alternatives considered.
 - Estimation of approximate cost of the project
 - Activities bar chart
 - Internal Lab resources required.
 - External resources required and their availability.
- 5. Second presentation with
 - Collection of reference material and
 - Design of the equipment with working drawings
 - Stage of work completed through activities bar chart.
- 6. Third presentation of complete work with suggested modifications.

TOTALLY INTEGRATED AUTOMATION

(Course	No.	408)
---------	-----	------

Designation of Course	Totally Integrated Automation		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory: - 04 Hours/ Week	End Semester Examination	60 Marks	04
Practical: - 02 Hours / Week	Internal Assessment	40 Marks	- 04
	Term Work	25 Marks	01
	Total	125 Marks	05

Course	The students should have knowledge of
Prerequisites: -	 Knowledge of Signals and Systems, Instrumentation for Robotics & Automation Knowledge of Basics of Sensors, PLC & HMI, Future Factory (FMS) Knowledge of Digital Electronics, Automatic Control Systems and computer networking
Course Objectives: -	 To impart knowledge on Various automation needs of the industries. Fundamental concepts of SCADA Systems The utility of Distributed Control Systems and applications of DCS in Process Automation Fundamentals of PAC Concepts of HMI and SCADA To gain knowledge in communication protocols in an integrated system
Course Outcomes: -	 At the end of this course, students will demonstrate the ability to – 1. Outline the selection, and application of various TIA control elements 2. Discuss the configuration of SCADA functionalities with Tags, Screens, and Trends 3. Compare various communication protocols for automation system 4. Identify and differentiate various sub systems of DCS 5. Describe various functions of Interfaces in DCS. 6. Analyze and design an appropriate system for the industrial applications.

Unit I	Introduction to Totally Integrated Automation (TIA)	(08 Hrs.)	
Need, cor	Need, components of TIA systems, advantages, Programmable Automation Controllers (PAC),		
Vertical In	ntegration structure. Necessity and Role in Industrial Automation, Need for HI	MI systems.	
Types of l	HMI.		
Unit II	Supervisory Control and Data Acquisition (SCADA)	(08 Hrs.)	
Overview	Developer and runtime packages, architecture, Tools, Tag, Internal & Externa	al graphics,	
Alarm log	ging, Tag logging, structured tags, Trends, history, Report generation, SCAL	DA industrial	
application	ns and other sector viz; defence, agriculture and medical.		
Unit III	Unit IIICommunication Protocols of SCADA(08 Hrs.)		
Proprietar	Proprietary and open Protocols, OLE/OPC, DDE, Server/Client Configuration, Messaging, Recipe,		
User admi	User administration, Interfacing of SCADA with PLC, drive, and other field device.		
Unit IV	Distributed Control Systems (DCS)	(08 Hrs.)	
Introduction : DCS Evolution, DCS Architecture, Comparison, Local Control unit, Process			
Interfacing Issues, Redundancy concept, Communication facilities, Case studies of Machine			
automation, Process automation, Comparison between SCADA and DCS.			

Unit V	Interfaces in DCS	(08 Hrs.)
Operator	interfaces: low level, high level, Operator Displays, Engineering Interfaces	: Low level,
high leve	el, General purpose computers in DCS, Interfacing between two indu	istrial grade
equipment	t's through PLC.	
Unit VI	Industrial Plant Design	(08 Hrs.)
Design criteria, Process sequencing, Plant layout modelling, Selection of industrial power and		
automation cables, Overview of plant simulation software.		
Totally Integrated Automation in Digital Enterprise - Automated engineering, Intelligent data management, Virtual commissioning, Cloud-based engineering, Preventive maintenance, Individualized mass production, Integrated energy management.		

Term Work

(Term work shall consists of minimum 8 experiments based on above syllabus)

Hands-on Experiments related to Course Contents in Totally Integrated Automation

- 1. Study of conveyor automation system using PLC, SCADA and Electrical drive.
- 2. Design of inspection automation system using sensors, PLC, HMI/SCADA.
- 3. Sizing and Selection of industrial power and automation cable for a typical application.
- 4. Design of simple water management system using PLC, SCADA and Electrical drive.
- 5. Design and Simulation of process automation using simulation software Viz. AUTOMATION STUDIO/ CIROS
- 6. Design and Simulation of robotic system using simulation software Viz. AUTOMATION STUDIO/ CIROS
- 7. Study of integration of robotics system with CNC Machine
- 8. Study of SIMATIC S7-1500, S7-1200, HMI PANEL and software SIMATIC STEP 7 based on TIA portal of Siemens.
- 9. Graphic image creation for operator control and monitoring
- 10. To prepare graphic object dynamic through programming for real time monitoring with an HMI
- 11. Troubleshooting and alarms with an HMI device
- 12. Industrial visit to automation industry
- 13. Interfacing between two industrial grade equipment's through PLC

Project Based Learning

Students have to prepare and submit a demonstration models/charts based on above syllabus Following are the list of project-based learning (Not limited to)

- 1. To prepare a demonstration model/chart based on totally integrated automation.
- 2. To prepare a demonstration model/chart based on SCADA System.
- 3. To prepare a demonstration model/chart based on Communication system for SCADA
- 4. To prepare a demonstration model/chart based on DCS
- 5. To prepare a demonstration model/chart based on interfaces in DCS
- 6. To prepare a demonstration model/chart based on Industrial Plant Design

Text books

- 1. Kelly, John. W. Webb & Ronald A. Reis, "Programmable logic controllers: Principles and Applications", Prentice Hall India, 2003.
- 2. Michael P. Lukas, Distributed Control systems, Van Nostrand Reinfold Company1995
- 3. David Bailey, Edwin Bright, "Practical SCADA for industry", Newnes, Burlington, 2003.
- 4. Gordon Clarke, Deon Reyneders, Edwin Wright, "Practical Modern SCADA Protocols: DNP3, 60870.5 and Related systems", Newnes Publishing, 2004.

- 5. Win C C Software Manual, Siemens, 2003
- 6. RS VIEW 32 Software Manual, Allen Bradly, 2005
- 7. CIMPLICITY SCADA Packages Manual, Fanuc India Ltd, 2004
- 8. William T Shaw, "Cybersecurity for SCADA systems", PennWell, 2006.
- 9. Stuart G McCrady, "Designing SCADA Application Software", Elsevier, 2013.

Reference Books

- 1. SIMATIC STEP 7 in the Totally Integrated Automation Portal", SIEMENS AG, 2012.
- 2. P.A. Janaki Raman, Robotics and Image Processing an Introduction, Tata McGraw Hill Publishing company Ltd., 1995.
- 3. Stuart A Boyer: SCADA supervisory control and data acquisition, International Society of Automation, 2010.
- 4. "Anatomy of Automation"- Amber G.H & P. S. Amber, Prentice Hall. Principles of CIM by Vajpayee, PHI.

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

EI-II INDUSTRIAL PRODUCT DESIGN

Designation of Course	Industrial Product Design		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory:- 03 Hours/ Week	End Semester Examination	60 Marks	03
Practical : 02 Hours/ Week	Internal Evaluation	40 Marks	
	Term Work	25 Marks	01
	Total	125 Marks	04

(Course No. 409.1)

Course Prerequisites:-	Student should have Basic Knowledge of		
	1. Machine Drawing I & II		
	2. Industrial Engineering & Management, Manufacturing Process,		
	Advanced Manufacturing Processes		
	3. CAD software viz. CATIA/ ProE/ SolidWorks/ Uni-Graphics		
Course Objectives:-	To study		
	1. Various aspects of product design and development different product		
	design methods.		
	2. Concept generation and product specification.		
	3. Industrial Design and Prototyping.		
	4. Aesthetic, Environment and Ergonomic considerations to develop an		
	industrial product.		
Course Outcomes:-	Students should be able to		
	1. Understand fundamental concept of industrial product design		
	2. Understand and apply different product design methods		
	3. Understand the concept generation and develop the product specifications		
	4. Evaluate legal economic issues and select a prototyping method for		
	industrial product		
	5. Evaluate the approaches of Aesthetic, Ergonomics and safety in		
	industrial product		
	6. Understand design for manufacturing, assembly and environment and		
	apply for industrial product		
	apply for industrial product		

Course Contents

Unit 1Introduction to Product Design and Development(6 Hrs)Overviewof industrial design, Successful product, development of quality aspect of product design;
Challenges of product development, Market survey. Identify customer needs and product planning
processes. Product architecture: Implication of architecture, establishing the architecture, related system
level design issue.

Unit 2 Product Design Methods

Creative and rational, clarifying objectives - the objective tree method, establishing functions- the function analysis method, setting requirements-the performance specification method, determining characteristics-the QFD method, generating alternatives – morphological chart method, evaluating alternatives – the weighted objective method, improving details – the value engineering method and design strategies.

Unit 3 Product Specifications and Concept Generation

Concept generation, five step concept generation method, concept selection, concept screening, concept testing, Product specification, steps to establish the target specifications.

(6 Hrs)

(6 Hrs)

Unit 4 **Industrial Design and Prototyping**

Its need, impact and quality, industrial design process and its management, legal issues in product design, IPR, design resources, economics and management of product development projects. Prototyping: Basics and principles of prototyping, Rapid prototyping technologies, planning for prototypes (6 Hrs)

Unit 5 Aesthetics, Ergonomics and Industrial Safety

Introduction-General approach to the man-machine relationship-workstation design working position and posture. An approach to industrial design - elements of design structure for industrial design in engineering applications in manufacturing systems. Environmental Application of ergonomics in industry for safety, health and environment control. Safety and ISO 14000 Systems

Unit 6	Design for Manufacture,	Assembly and Environment

(6 Hrs)

(6 Hrs)

Estimating manufacturing cost, reducing component, assembly and support costs, design for assembly, design for disassembly, design for environment, design for graphics and packaging, effective prototyping-principle and planning. Product data management. Innovation and creativity in product design. Product costing, value engineering, aesthetic concepts.

Project Based Learning:

- 1. Live market survey with at least 100 customer for given product.
- 2. To develop 2D or 3D model of product architecture for selected product.
- 3. To develop 2D or 3D model by using any prototyping method.
- 4. Write the patent for given model and file the same.

Term Work: Use of different CAD software viz. CATIA/ ProE/ SolidWorks/ Uni-Graphics while doingfollowing case studies:

- 1. A case study on market study to identify costumer needs
- 2. A case study on use of morphological analysis
- 3. A case study on Quality Function Development (QFD)
- 4. A case study of one aesthetic considerations in product design
- 5. Failure Modes and Effects Analysis (FMEA) in product design
- 6. A case study on Design for Manufacturing
- 7. A case study on Product Lifecycle Management (PLM)
- 8. A case study of one ergonomic considerations in product design
- 9. A case study of one industrial safety considerations in product design

Text Books:

- 1. Product Design and Development: Karl T. Ulrich, Steven G. Eppinger; Irwin McGraw Hill
- 2. Product design and Manufacture: A.C. Chitale and R.C. Gupta; PHI Chitale & Gupta, "ProductDevelopment", Tata McGraw Hill
- 3. New Product Development: Tim Jones, Butterworth, Heinemann, Oxford, 1997.
- 4. Product Design for Manufacture and Assembly: Geoffrey Boothroyd, Peter Dewhurst and WinstonKnight.

Reference Books:

- 1. Product Design: Otto and Wood; Pearson education.
- 2. Industrial Design for Engineers: Mayall W.H, London, Hiffee books Ltd, 1988
- 3. Introduction to ergonomics R.C. Bridger, McGraw Hill Pub.
- 4. Product Design Kevin Otto, Kristin Wood Pierson Education.

Unit Test-I	Unit-I, II, III
Unit Test-II	Unit-IV, V, VI

EI-II PROJECT MANAGEMENT & ETHICS (Course No. 409.2)

Designation of Course	Project Management & Ethics		
Teaching Scheme:	Examination Scheme:	Examination Scheme: Credits Allotted	
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03
Practical: - 02 Hours/ Week	Internal Assessment	40 Marks	03
	Term Work	25 Marks	01
	Total	125 Marks	04

Course	The students should have knowledge of
Prerequisites: -	1. Mathematics & Statistics
i i ei equisitest	2. Industrial engineering & management
	3. Soft skills and professional skills
Course Objectives: -	 To create awareness about the concepts of project management and its components
	 To apply the techniques specified by project management body of knowledge for effective project management.
	3. To create awareness of social and professional responsibility among stakeholders
Course Outcomes: -	The students should be able to-
	1. Understand concepts of project management and apply it to various
	phases in project life cycle
	2. Understand economic models, evaluate project profitability and analyze risk management
	3. Understand different cost estimating & forecasting methods to apply in project budgeting
	4. Understand the methods of project planning, scheduling and apply it to reduce project duration
	5. Understand the project execution, monitoring, control process and evaluate the performance of the project
	6. Understand professional ethics of project management and apply it for organizational benefits

Unit I	Introduction To Project Management	(06 Hrs.)	
Project, Pr	Project, Project Management, Management by projects, Project Management Associations, Benefits		
of Project	Management, Project management Process, Role of Project Manager, Project	Lifecycle	
Unit II	Project Management Techniques and Risk Management	(06 Hrs.)	
Feasibility	V Studies, Numerical Models (Payback Period, Return on Investment, Net Pre	sent Value,	
Internal ra	te of Return), Scoring Models, Break Even Analysis, Project Risk Managem	nent:	
Introductio	on, Risk, Risk Management, Role of Risk Management in Overall Project M	anagement,	
Steps in R	Steps in Risk Management, Risk Identification, Risk Analysis, Reducing Risks.		
Unit III	Project Cost Estimating	(06 Hrs.)	
Estimating terminology, Project Costs, Estimating Methods (Jobbing, Factoring, Inflation,			
Economies of Sales, Unit Rates, Day Work), Analogous Estimating, Parametric Estimating, Bottom-			
Up Estim	Up Estimating, Three-Point Estimates, Monte Carlo Simulation, Project Budgeting, Resource		
Allocation	Allocation, Cost Forecasts.		
Unit IV	Project Planning and Scheduling	(06 Hrs.)	
Project Planning: Introduction, Need of Project Planning, Project Life Cycle, Roles, Responsibility			
and Team	and Team Work, Project Planning Process, Work Breakdown Structure (WBS), Scheduling:		

Introduction, Development of Project Network, Time Estimation, Determination of the Critical Path, PERT Model, Measures of variability, CPM Model, Network Cost System.

Unit V Project Monitoring and Control

(06 Hrs.)

Project Execution and Control: Introduction, Project Execution, Project Control Process, Purpose of Project Execution and Control, Project Management Information System: Introduction, Project Management Information System (PMIS), Planning of PMIS, Design of PMIS, Project Performance Measurement and Evaluation: Introduction, Performance Measurement, Productivity, Project Performance Evaluation, Benefits and Challenges of Performance Measurement and Evaluation, Controlling the Projects

Unit VI Professional Responsibility (Ethics)

(06 Hrs.)

Ensuring Integrity and Professionalism, Project Management Knowledge Base, Enhancing Individual Competence, Balancing Stakeholder Interests, Interactions with Team Members and Stakeholders, Templates, Tools and Techniques

Term Work

- 1. Identify the Key Components of a Project
- 2. Create a Project with MS Project
- 3. Represent Project Resources in MS Project
- 4. Perform Resource Leveling in MS Project
- 5. Plan and manage procurement
- 6. Plan and manage schedule
- 7. Develop, execute, and validate a strategy for stakeholder engagement
- 8. Determine risk management options
- 9. Displaying Calendar Information in a Gantt Chart

Project Based Learning

- 1. Case study involving various aspects of project
- 2. Case study involving various techniques used for project selection.
- 3. Case study of project cost estimation
- 4. Case study based on project scheduling
- 5. Industrial case study of project ethics
- 6. Case study on project risk management

Textbooks

- 1. Erik Larson, Clifford Gray; "Project Management: The Managerial Process"; McGraw Hill Education; Sixth edition (1 July 2014)
- 2. Panneerselvam R; "Project Management"; Prentice Hall India Learning Private Limited; 1 Edition (2009)
- 3. Samuel J. Mantel, Jack R. Meredith; "Project Management: A Managerial Approach"; Wiley; Eighth edition (6 August 2012)
- 4. Gupta R; "Project Management"; Prentice Hall India Learning Private Limited; Second edition (2014)

Reference Books

- 1. Project Management Institute; "A Guide to the Project Management Body of Knowledge (PMBOK Guide)"; 5th Revised edition (1 January 2013)
- 2. Harold Kerzner; "Project Management: A Systems Approach to Planning, Scheduling and Controlling Paperback"; Wiley; tenth edition (20 November 2012)

Unit Test-I	Unit- I,II, III
Unit Test-II	Unit- IV, V, VI

EI-II ADDITIVE MANUFACTURING & RAPID PROTOTYPING

(Course No. 409.3)			
Designation of Course	Designation of Course EL II: Additive Manufacturing & Rapid Prototyping		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03
Practical: - 02 Hours/ Week	Internal Assessment	40 Marks	05
	Term Work	25 Marks	01
	Total	125 Marks	04

The students should have knowledge of

1) Solid Modelling, Auto CAD

Course

Prerequisites: -

	2) Manufacturing Technology I & II
	3) Design & Analysis of Machine Components
Course Objectives: -	1) To understand the fundamental concepts of Additive Manufacturing
	(i.e., Rapid Prototyping) and 3-D printing, its advantages, and
	limitations.
	2) To classify various types of Additive Manufacturing Processes and
	know their working principle, advantages, limitations etc.
	3) To have a holistic view of various applications of these technologies in
	relevant fields such as mechanical, Bio-medical, Aerospace,
	Electronics etc.
Course Outcomes: -	The students should be able to-
	1. Understand the importance of additive manufacturing process and AM process chain
	2. Understand and apply Liquid-based and Solid Based additive manufacturing processes.
	3. Understand and apply powder based additive manufacturing processes.
	4. Understand and apply various Metal Additive Manufacturing process
	for different products

5. Apply various AM data formatting and data processing techniques for different products

6. Select suitable material for AM process and explore different applications of AM parts from various fields like Automobile, Aerospace, Bio-medical etc.

Course Contents

Unit I	Introduction to Rapid Prototyping	(06 Hrs.)
Introducti	on: Prototyping fundamentals, Historical development, Fundamentals	of Rapid
Prototypin	g, Advantages and Limitations of Rapid Prototyping, Commonly us	ed Terms,
Classificat	ion of RP process, AM process chain: Conceptualization, CAD, conversion	on to STL,
Transfer t	o AM, STL file manipulation, Machine setup, build , removal and clea	in up, post
processing		

Unit IILiquid-based and Solid Based Rapid Prototyping((06 Hrs.)
Liquid-based Rapid Prototyping Systems: Stereo lithography Apparatus (SLA), Solid ground		
curing (SGC). Models and specifications, Process, working principle, Applications, Advantages and		
Disadvant	ages, Case studies.	

Solid-based Rapid Prototyping Systems: Laminated Object Manufacturing (LOM), Fused Deposition Modeling (FDM), Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies.

Unit III	Powder Based Rapid Prototyping	(06 Hrs.)	
Powder E	Bed Fusion AM Processes: Selective laser Sintering (SLS), Materials, Indirec	t and direct	
	der fusion mechanism and powder handling, Process Modelling, SLS Metal a		
-	on, post processing, post curing, surface deviation and accuracy, Electron Be	0	
	Process Benefits and Drawbacks, Applications of Powder Bed Fusion Proc	cesses, Post	
	g of AM parts		
	gineered Net Shaping (LENS): Processes, materials, products, advantages,	limitations,	
	cations– Case Studies.		
Unit IV	Design for Additive Manufacturing	(06 Hrs.)	
Design tools for AM, Part Orientation, Removal of Supports, Hollowing out parts, Inclusion of			
Undercuts and Other Manufacturing Constraining Features, Interlocking Features, Reduction of Part			
Count in an Assembly, Identification of markings/ numbers etc.			
Guidelines for process selection : Introduction, selection methods for a part, challenges of selection, example system for preliminary selection, production planning and control			
Unit V			
		, ,	
Rapid Prototyping Data Formats: STL Format, STL File Problems, Consequence of Building Valid			
and Invalid Tessellated Models, STL file Repairs: Generic Solution, Other Translators, Newly			
Proposed Formats. Rapid Prototyping Software's: Features of various RP software's like Magics,			
Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D			
doctor.			
AM Data	AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour		

AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.

Unit VI	AM Materials and Applications	(00 Hrs.)
3D Printin	ng Materials: properties, characteristics, and application of all types (ABS, I	PLA, PVA,
HDPE, PET, PETG etc.) Types of Composites Materials, properties, characteristics, and application		
of all type	s. (N6, N12, ABS Carbon Fiber, etc.)	

RP Applications: Material Relationship, Application in Design, Application in Engineering, Analysis and Planning, Aerospace Industry, Automotive Industry, Jewelry Industry, Coin Industry, GIS application, Arts and Architecture.

RP Medical and Bioengineering Applications: Planning and simulation of complex surgery, Customized Implants & Prosthesis, Design and Production of Medical Devices, Forensic Science and Anthropology, Visualization of Biomolecules.

Term Work

- 1. Study of 3D Printing Machines
- 2. Study of different AM Software's
- 3. Study of AM Data Formatting and Data Processing
- 4. Study and demonstration of Plastic 3D Printing using FDM based Rapid Prototyping (Plastic & Composites)
- 5. Study and demonstration of Plastic 3D Printing using SLS based Rapid Prototyping (Plastic & Composites)
- 6. Study and demonstration of Plastic 3D Printing using Liquid based/solid based/powder based Rapid Prototyping (Plastic & Composites)
- 7. Study and demonstration of Plastic 3D using FDM based Rapid Prototyping Printing (Metals)
- 8. Assignment on 3D Printing Applications.
- 9. Select appropriate 3D printing material and justify it for following application: a. Prototyping
 - b. medical appliances
 - c. Construction.

- 10. Selection of 3d printing machine specification for following materials:
 - a. Polymers
 - b. Composites
 - c. Metals
- 11. To measure surface quality and mechanical properties of AM product
- 12. Study of CAM packages for AM

Project Based Learning

Students have to prepare and submit a demonstration models based on above syllabus (Not limited to)

- 1. To prepare a demonstration model/chart of AM Processes chain
- 2. To prepare a demonstration model of liquid-based AM technologies
- 3. To prepare a demonstration model of solid based AM technologies
- 4. To prepare a demonstration model of powder-based AM technologies
- 5. To prepare a 3D printed model for various applications (Bio-medical, aerospace etc.)
- 6. To prepare a document on data formatting and data process by selecting one application

Textbooks

- 1. Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory and Practice", Springer, 2006.
- 2. Anupam Saxena, Birendra Sahay, "Computer Aided Engineering Design", Springer, 2005.
- 3. Patri K. Venuvinod and Weiyin Ma, "Rapid Prototyping: Laser-based and Other Technologies", Springer, 2004.
- 4. Chua Chee Kai, Leong Kah Fai, "3D Printing and Additive Manufacturing: Principles & Applications", 4th Edition, World Scientific, 2015.
- 5. Rafiq Noorani, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley & Sons, 2006.
- 6. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.

Reference Books

- 1. Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles and Applications", World scientific, 2003.
- 2. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010
- 3. D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, Springer 2001.
- 4. David F. Rogers, J. A. Adams, "Mathematical Elements for Computer Graphics", TMH, 2008.
- 5. Kevin N. Otto, Kristin L. Wood, "Product Design", Pearson Education, 2004.

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

EI-II IMAGE PROCESSING

(Course No. 409.4)

Designation of Course	Image Processing			
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03	
Practical: - 02 Hours/ Week	Internal Assessment	40 Marks	- 03	
	Term Work	25 Marks	01	
	Total	125 Marks	04	

Course Prerequisites:	Engineering Graphics, Python programming, AI		
Course Objective: -	The students will learn about the basics of image processing in this		
	course		
Course Outcomes	Students shall be able to		
	1. Understand the fundamentals of digital image processing		
	2. Understand the basics of image enhancement and apply the		
	knowledge in spatial domain.		
	3. Understand the basics of image enhancement and apply the		
	knowledge in Frequency domain.		
	4. Apply knowledge of image restoration		
	5. Apply knowledge of morphing and colour processing to an image		
	6. Understand Image Compression and Application of IP		

Unit I	Digital Image Fundamentals	(06 Hrs.)		
What is Digital Image Processing, Origins of Digital Image Processing, Examples of fields that use DIP, Fundamental Steps in Digital Image Processing, Components of an Image Processing System, Elements of Visual Perception, Image Sensing and Acquisition.				
Unit II	Image Enhancement in the Spatial Domain	(06 Hrs.)		
Image Sampling and Quantization, Some Basic Relationships Between Pixels, Linear and Nonlinear Operations. Some Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters				
Unit III	Frequency Domain	(06 Hrs.)		
Preliminary Concepts, The Discrete Fourier Transform (DFT) of Two Variables, Properties of the 2-DDFT, Filtering in the Frequency Domain, Image Smoothing and Image Sharpening Using Frequency Domain Filters, Selective Filtering				
Unit IV	Restoration:	(06 Hrs.)		
Noise models, Restoration in the Presence of Noise Only using Spatial Filtering and Frequency Domain Filtering, Linear, Position-Invariant degradations Estimating the				

Degradation Function, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering, Constrained Least Squares Filtering

Unit V	Morphological Image Processing	(06 Hrs.)
Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing.		
Image Processing: Color Fundamentals, Color Models, Pseudo color Image Processing.		
Unit VI	Image Compression and Application of IP	(06 Hrs.)

Image Compression: Fundamentals, Models, Error Free and lossy compressions, Standards Applications of IP: satellite, sonar, radar and medical uses

Term work

- 1. Image Printing Program Based on Half toning.
- 2. Reducing the Number of Intensity Levels in an Image.
- 3. Zooming and Shrinking Images by Pixel Replication.
- 4. Zooming and Shrinking Images by Bilinear Interpolation.
- 5. Arithmetic Operations.
- 6. Image Enhancement Using Intensity Transformations.
- 7. Histogram Equalization.
- 8. Spatial Filtering.
- 9. Enhancement Using the Laplacian.
- 10. Unsharp Masking

Text Books:

- 1. Digital Image Processing by Bhabatosh Chanda and Dwijesh Majumder, PHI
- 2. Fundamentals of Digital Image Processing by Anil K Jain, PHI
- 3. Digital Image Processing Using Matlab, Rafel C. Gonzalez and Richard E. Woods, Pearson Education.

Reference Books:

- 1. Kenneth R. Castleman, Digital Image Processing', Pearson, 2006.
- 2. D,E. Dudgeon and RM. Mersereau, Multidimensional Digital Signal Processing⁶, Prentice Hall Professional Technical Reference, 1990.
- 3. William K. Pratt, Digital Image Processing', John Wiley, New York, 2002

Project based learning

Projects related to

- 1. Image Printing Program Based on Halftoning.
- 2. Reducing the Number of Intensity Levels in an Image.
- 3. Zooming and Shrinking Images by Pixel Replication.
- 4. Zooming and Shrinking Images by Bilinear Interpolation.
- 5. Arithmetic Operations.
- 6. Image Enhancement Using Intensity Transformations.
- 7. Histogram Equalization.
- 8. Spatial Filtering.
- 9. Enhancement Using the Laplacian.
- 10. Unsharp Masking

INDUSTRIAL ENGINEERING & MANAGEMENT

(Course No. 410)				
Designation of Course	Designation of Course Industrial Engineering & Management			
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03	
	Internal Assessment	40 Marks	03	
	Total	100 Marks	03	

Course	The students should have knowledge of	
Prerequisites: -	1. Fundamentals of Mechanical Engineering	
-	2. Manufacturing Process	
	3. Advanced Manufacturing Processes	
Course Objectives: -	To impart knowledge on	
	1. The fundamentals of management	
	2. Types of business organization and its structure	
	3. Fundamentals of main four departments of an organization i.e. finance,	
	production, marketing and personnel	
	4. Details of method study tool of industrial engineering	
	5. Details of work measurement tool of industrial engineering	
	6. Details of ergonomics and industrial safety tool of industrial engineering	
Course Outcomes: -	At the end of this course, students will demonstrate the ability to –	
	1. Understand fundamentals of management	
	2. Understand and select different types of business organizations and	
	it's structure	
	3. Evaluate fundamentals of main four departments of an organization	
	i.e. finance, production, marketing and personnel	
	4. Understand and Analyze the details of method study tool used in industrial engineering	
	5. Understand and Analyze the details of work measurement tool used	
	in industrial engineering	
	6. Understand and Analyze the details of ergonomics and industrial	
	safety tool used in industrial engineering	

Course Contents

Unit I	Management-An Introduction	(08 Hrs.)	
Managem	Management- Meaning and Definitions, Management, Administration, and Organization concepts,		
Managem	ent as an Art and Science and a profession, contribution of various thinkers to n	nanagement	
0	Types and Functions of Management. Different approaches to management -	- scientific,	
operationa	al, human and system approach		
Unit II	Organization	(08 Hrs.)	
	forms of business Organization - Individual proprietorship, Partnership,		
	Co-Operative enterprise, Public Sector, Undertakings, organizational structures in Inc	lustries, Line,	
	, Line and functional, Project, Matrix Organization and Committees		
Unit III	Financial, Marketing and Personnel Management	(08 Hrs.)	
Personnel	Management-Definitions Recruitment, Selection and training of the emp	oloyees, Job	
valuation	valuation and Merit rating, wage administration different methods of wage payments, incentives.		
Marketing	g Management-Definitions, Marketing and Selling concept, market se	egmentation,	
distribution channels, Market Research, Advertising and sales promotion and Sales forecasting.			
Financial Management-Capital structure, Fixed capital, working capital, sources of finance, cost			
analysis, Break even analysis, Depreciation and Financial statement.			

Unit IV	Method Study	(08 Hrs.)	
Steps in n	Steps in method study, tools and techniques used, process chart symbols, flow diagrams, two handed		
chart, mu	ltiple activity chart, use of motion pictures and its analysis. SIMO charts, cho	orno & cycle	
graph, dev	veloping, presentation, installation and maintenance of improved methods.		
Unit V	Work Measurement	(08 Hrs.)	
Time Stu	dy: Aim and objectives , terminology and tools, use of stop watch procedure	in making a	
time stud	y, elements, selection of operations time study forms, handling of foreign	n elements.	
Performat	nce rating.		
Allowanc	es: Personal, Fatigue and other allowances. Analysis and calculation of Star	dard Time.	
Determina	ation of number of cycle's time study for indirect functions such as M	aintenance,	
Marketing	g etc., MOST Technique.		
Works Sa	Works Sampling: Definition, Objectives, theory of Work Sampling. Other applications of work		
sampling,	sampling, errors in work sampling study.		
Synthetic	Synthetic and Standard data Methods: Concepts, introduction to PMTS, MTM-1, WF, Basic		
motion tir	motion time, MTM-2, and other second – generation methods timing of group operations		
Unit VI	Ergonomics and Industrial Safety	(08 Hrs.)	
Definitions, importance in industry, basic anatomy of human body, anthropometrics, measurement			
of physical work and its techniques, work and rest cycles, bio mechanical factors environment			
effects.	effects.		
Importance of safety, planning, training, safety precautions, safety Equipment's, Government regulations on safety.			

Project Based Learning

Students have to prepare and submit a demonstration models/charts based on above syllabus Following are the list of project-based learning (Not limited to)

- 1. Management: Types, Functions, Principles
- 2. Study of organization Structure
- 3. Study of Business organizations
- 4. Study of Financial, Marketing and Management
- 5. Study of Personnel Management
- 6. Study of Method Study methods and procedure
- 7. Study of Method Study charts
- 8. Study of Work Measurement methods and procedure
- 9. Study of Time study procedure and problems
- 10. Study of Work sampling and problems
- 11. Study of Ergonomics
- 12. Study of Industrial Safety

Text Books:

- 1. O. P. Khanna, Industrial Engineering & Management, Dhanapat Rai & Sons.
- 2. M. C. Shukla, Business Organization and Management, S. Chand & Co. Ltd, New Delhi.
- 3. Harold Koontz & Heinz Enrich, Essentials of Management, McGraw Hill International.
- 4. M. N. Mishra, Organizational Behavior, Vikas publishing New Delhi.
- 5. Dale Yoder, Personnel Management.
- 6. Work Study, ILO.

Reference Books:

- 1. S. S. Patil, Industrial Engineering & Management, Electro tech Publication.
- 2. Mansoor Ali &Dalela, Industrial Engineering & Management System, Standard Publisher distributions.

- 3. R. M. Currie, Work Study, ELBS.
- 4. Management by James A. F. Stoner, R. Edward Freeman, PHI
- 5. Management Today: Principles and Practice by Gene Burton and Manab Thakur, TMH
- 6. Organizational Behavior by Keith Davis, TMH
- 7. Management (Tasks, responsibilities and Practices) by Peter Drucker, Harper Business
- 8. Production Management by Lockyer, ELBS
- 9. Modern Production Management by E. S. Buffa (John Wiley)
- 10. Financial Management by Vanhorne, PHI
- 11. Financial Management (Theory and Practice) by Prasanna Chandra, TMH
- 12. Marketing Management by Philip Kotler, Pearson Edition
- 13. Marketing Management by Rajan Saxena, TMH
- 14. Personnel Management by Edward Flippo, TMH
- 15. Industrial Engineering and PPC" by A.K Bewwor and V.A.Kulkarni.

Unit Tests

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

FIELD & SERVICE ROBOTS

(Course No. 411)

Designation of Course	Field & Service Robots		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03
Tutorial: - 01 Hours/ Week	Internal Assessment	40 Marks	05
	Tutorial		01
	Total	100 Marks	04

Course	The students should have knowledge of
Prerequisites: -	1. Sensor technology
-	2. Artificial Intelligence for robotics
	3. Robot programming
Course Objectives: -	To impart knowledge on
	 The applications and current trend in field and service robot (FSR) Path planning algorithms inside a field/service robot for navigation Interaction interface concepts for humanoid robot
Course Outcomes: -	The students should be able to-
	 Describe the applications and current trend in field and service robot Explain about the kinematic modeling of mobile robots Identify, formulate and solve algorithm related to localization, obstacle avoidance, and mapping Apply and program robot for reactive concepts for robot interaction with human, between machines and among robots Analyze the concepts of balancing legged robots and interaction interface concepts for humanoid robot Implement path planning algorithms inside a field/service robot for navigation.

Course Contents

Unit I	Introduction	(08 Hrs.)	
-	History of service robotics, Present status and future trends, Need for service robots, applications		
examples	and Specifications of service and field Robots. Non-conventional Industrial re-	bots.	
Unit II	Localization	(08 Hrs.)	
Introducti	on-Challenges of Localization, Map Representation, Probabilistic M	Aap based	
Localizati	on, Monte Carlo localization, Landmark based navigation, Globally unique le	ocalization,	
Positionin	g beacon systems, Route based localization.		
Unit III	Planning and Navigation	(08 Hrs.)	
Introduction-Path planning overview, Road map path planning, Cell decomposition path planning, Potential field path planning, Obstacle avoidance, Case studies: Tiered robot architectures.			
Unit IV	Field Robots	(08 Hrs.)	
Ariel robots, Collision avoidance, Robots for agriculture, mining, exploration, underwater, Civilian and military applications, Nuclear applications, Space applications.			
Unit V	Humanoids	(08 Hrs.)	
Wheeled and legged, Legged locomotion and balance, Arm movement, Gaze and auditory			
orientation control, Facial expression, Hands and manipulation, Sound and speech generation,			
Motion capture/Learning from demonstration.			
Unit VI	Human Recognition and Application of FSR	(08 Hrs.)	

Image Human activity recognition using vision, touch, sound, Vision, Tactile Sensing, Models of emotion and motivation. Performance, Interaction, Safety and robustness, Applications - Case studies.

Project Based Learning

- 1. Need for service robot.
- 2. Experiment on robot kinematics.
- 3. Probabilistic Map based Localization-Monte carlo localization
- 4. Global & Local path planning in robotics.
- 5. Assignment on Metrical maps Grid maps Sector maps Hybrid Maps.
- 6. Case study on Human activity recognition using vision, touch, sound etc.
- 7. Use of PUDU Bot mobile robot for office work.

Text books

- 1. Kelly, Alonzo; Iagnemma, Karl; Howard, Andrew, "Field and Service Robotics ", Springer, 2011.
- 2. Sebastian Thrun, Wolfram Burgard, Dieter Fox, "Probabilistic Robotics", MIT Press, 2005.
- 3. Karsten Berns, Ewald Von Puttkamer, "Autonomous L and Vehicles Steps towards Service Robots", Vieweg Teubner Springer, 2009.
- 4. Bruno Siciliano, Oussama Khatib, Springer Hand book of Robotics, Springer, 2008.

Reference Books

- 1. Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza, "Introduction to Autonomous Mobile Robots", Bradford Company Scituate, USA, 2004
- 2. Riadh Siaer, "The future of Humanoid Robots- Research and applications", Intech Publications, 2012.
- 3. Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering An Integrated Approach", Eastern Economy Edition, Prentice Hall of India P Ltd., 2006.
- 4. Howie Choset, Kevin Lynch Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun, "Principles of Robot Motion-Theory, Algorithms, and Implementation", MIT Press, Cambridge, 2005.

Unit Tests

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

MOBILE ROBOTS & DRONE TECHNOLOGY

(Course 110, 412)				
Designation of Course	Mobile Robots & Drone Technology			
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory Hours/ Week	End Semester Examination			
Practical: - 02 Hours/ Week	Internal Assessment		1	
	Term Work	25 Marks	- 01	
	Oral/Practical	25 Marks		
	Total	50 Marks	01	

Course	The students should have knowledge of
Prerequisites: -	1. Robotics Simulation softwares
1	2. Robotic Control Systems
	3. Artificial Intelligence in Robotics.
Course Objectives: -	1. To recognize and describe the role of Mobile Robots & Drone
	Technology (MRDT) in past, present, and future society.
	2. To comprehend and explain various components of MRDT.
	3. To comprehend and explain basics of flight and flight control systems.
	4. To understand and describe basics of underwater robots.
Course Outcomes: -	The students should be able to-
	1. Understand the challenges in developing autonomous mobile Robots.
	2. Abstract kinematic control of wheeled mobile Robots.
	3. Understand the challenges involved in sensory perception for mobile
	Robots.
	4. Ability to design UAV drone system.
	5. To understand working of different types of engines and its area of applications.
	6. To understand static and dynamic stability dynamic instability and control concepts.
	7. To know the loads taken by aircraft and type of construction and also construction materials in them.

Course Contents

Unit I	Introduction to mobile robots	(04 Hrs.)	
Introduction to Mobile robots, Locomotion, Classification -Legged, hopping, Wheeled, Aerial, Key			
issues in locomotion, Degree of mobility and steerability, robot maneuverability, kinematic			
modelling	modelling of Mobile robot, Wheel kinematic constraints Motion control, Kinematic models of		
simple car	and legged robots.		
Unit II	Control of Mobile Robots	(04 Hrs.)	
Control theory, Control design basics, Cruise-Controllers, Performance Objectives, State space modelling of mobile robots, Linearization, LTI system, Stability, PID control, basic control algorithms, Low-level, control. State space control, backstepping control.			
Unit III	Perception and Actuation	(04 Hrs.)	
Sensors for mobile robots, Classification, performance, uncertainty in sensors, Wheel sensor, Heading sensor, Accelerometer, Inertial measurement, Motion sensor, range sensors, Global positioning system (GPS), Doppler effect-based sensors, Vision sensor, Basics of computer vision, Image processing techniques, Feature extraction – image, Range data location recognition, Actuator systems: Types of motors, DC, AC servo systems, Linear actuation systems.			

(Course No. 412)

Unit IV Introduction and Design of UAV Drone Systems

Introduction to Unmanned Aircraft Systems, History of UAV drones, classification of drones, System Composition, Applications.

Introduction to Design and Selection of the System, Aerodynamics and Airframe Configurations, Characteristics of Aircraft Types, Design Standards and Regulatory Aspects-India Specific, Design for Stealth.

TT 1 . T T		
Unit V	Avionics Hardware of Drones	(04 Hrs.)

Autopilot, AGL-pressure sensors-servos-accelerometer - gyros-actuators - power supply-processor, integration, installation, configuration.

Unit VI Payloads, Controls, Navigation and Testing

(04 Hrs.)

Payloads, Telemetry, Tracking, controls-PID feedback, radio control frequency range, modems, memory system, simulation, ground test-analysis-trouble shooting.

Waypoints navigation, ground control software, System Ground Testing, System In-flight Testing, Future Prospects and Challenges.

Term Work

- 1. Calculation of steerability, mobility and maneuverability of various mobile robot wheel configurations
- 2. Designing of kinematic models of wheels.
- 3. Interfacing and speed control of Robot wheel using PWM signal
- 4. Tuning PID controller using ZN method and estimation of speed
- 5. Backstepping control of linear path.
- 6. Interfacing a GPS module to a mobile robot.
- 7. Range data detection using a LIDAR module and ultrasonic module.
- 8. To demonstrate speed control of BLDC Motor using PWM technique.
- 9. To measure the frequency and level of RF signals using of spectrum analyzer.
- 10. To configure, test and perform communication of FCB with motor, GPS, ESC and sensors.
- 11. To write technical specification sheet for different types of the drone and for it's application.
- 12. To identify different features of controls of HD and thermal image of camera used in drone.
- 13. To identify of different types of SMD IC packages.
- 14. To identify different types of ports and connectors.
- 15. To study and sketch various frame structure viz. quadcopter frame (plus shape, cross shape and H-shape), hexacopter frame (hexa+ and hexa S).
- 16. Practices on various drone assembly materials.

Textbooks

- 1. Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics.
- 2. Siegwart, Nourbakhsh, "Introduction to Autonomous Mobile Robots", MIT Press, 2011.
- 3. Thrun, Burgard, Fox, "Probabilistic Robotics", MIT Press, 2005.
- 4. S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006.
- 5. Howie M. Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, Sebastian Thrun, Ronald C Arkin 2005 "Principles of Robot Motion: Theory, Algorithm & Implementations", MIT Press, 2005.
- 6. Roland Siegwant & Illah R. Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, 2004.
- 7. ASA Test Prep. Remote Pilot Test Prep UAS: Study & Prepare. Wellfleet Press, 2016. 978-1577151326
- 8. Austin, Unmanned Aircraft Systems: UAVS Design, Development and Deployment. Wiley, 2010. 978-0-470-05819-0
- 9. Baichtal, Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs. Que Publishing, 2016. 978-0789755988
- 10. Beard & McLain, Small Unmanned Aircraft: Theory and Practice. Princeton University Press,

2012. 978-0691149219

11. Cares & Dickmann, Operations Research for Unmanned Systems. Wiley, 2016. 978-1-118-91894-4.

Reference Books

- 1. Reg Austin "Unmanned Aircraft Systems UAV design, development and deployment", Wiley, 2010.
- 2. Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc, 1998.
- 3. Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy", Springer, 2007
- 4. Paul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc, 1998.

Unit Tests

Unit Test-I	Unit- I,II, III
Unit Test-II	Unit- IV, V, VI

DESIGN OF INTEGRATED ROBOTIC CELLS

Designation of Course Design of Integrated Robotic Cells			ic Cells
Teaching Scheme:	Examination Sch	n Scheme Credits All	
Theory: Hours/Week	End Semester Examination		
Practical: 04 Hours/Week	Internal Assessment		
	Term Work	25 Marks	02
	Oral/Practical	25 Mark	
	Total	50 Marks	02

(Course No. 413)

Course Prerequisites: -	 Drafting Software like Auto-CAD, CATIA Robotic Simulation Software Engineering Mathematics
Course Objectives: -	To provide knowledge about 1. Robot Cell Design 2. Robotic Design optimization techniques 3. Robotic Cell design in Manufacturing
Course Outcomes: -	 The students should be able to 1. To Understand Robot cell design 2. To Understand robot control system design 3. To Design robot drive system 4. To Estimate robotic design optimization technique 5. To Design robot in Manufacturing 6. To Design mobile Robot

Course Contents

Unit-I	Introduction to Robotic Cell Design Concept	04 Hrs.
Principle of Robotic Cell Design, Robot Cell design outlet, Robotic cell design concept and		
process, objective tree in design, Function analysis, grant chart, Purpose of Experiment and test		
in design,	design consideration for ocean robot.	
Unit-II	Robot Control system design	04 Hrs.
Feedback control system design, types of control systems, open and closed loop control systems, and state-space models, MATLAB SISO design tool.		
Unit-III	Robot Drive Train Design	04 Hrs.
Characteristics of servomotors and gearboxes in industrial robots, Trajectory generator, Design method - Motor model and Gear box model.		
Unit-IV	Design Optimization Technique	04 Hrs.
Characteristics of objective functions for design optimization based on robot simulations, Optimization algorithms - Gradient based algorithms, Genetic algorithms, The Complex algorithm, The Complex-RF, Complex-RD – A modified version for discrete variables, Complex-RFD – An optimization algorithm for mixed variables, Adaptive Complex method.		

Unit-V	Robotic Cell design and Manufacturing	04 Hrs.
Introduction, Application of Robotics cell in manufacturing, Inline Mechanical Assembly cell,		
Electronic Sensor assembly cell.		
Unit-VI	Design of Mobile Robot	04 Hrs.

Term Work:

Term work shall consist record of minimum 8 experiments from the following.

- 1. Case Study of Robotic Cell Design Concept
- 2. Case Study of Robot Control system design
- 3. Case Study of Robot Drive Train Design
- 4. Case Study of Robotic cell Design Optimization Technique
- 5. Case Study of Robotic Cell design and Manufacturing
- 6. Case Study of Design of Mobile Robot
- 7. Case Study of Design of Agricultural application robot
- 8. Case Study of Design of Field and service robot
- 9. Case Study of Design of Bomb diffusing robot

Text Books:

1. M.P. Groover, "Automation, Production Systems & Computer Integrated Manufacturing", PHI, 3rd Edition, 2012.

2. M.P. Groover, M.Naegel, "Industrial Robotics, Technology, Programming & Applications", TMH, 2nd Edition, 2012.

3. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book co, 1987.

References Books:

1. J.G. Keramas, "Robotics Technology Fundamentals", Thompson Learning, 2nd Edition, 2002.

2. J.J. Craig "Introduction to Robotics Mechanics & Control", Pearson Education, 3rd Edition, 2004.

3. S.R. Deb, "Robotics Technology and Flexible Automation", TMH, 2nd Edition, 2010.

4. Mike Wilson, "Implementation of Robotic Systems"

PROJECT STAGE -II (Course No. 414)

Designation of Course	Project Stage -II		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory: Hours/ Week	End Semester Examination	Marks	
Tutorial:Hours/ Week	Internal Assessment	Marks	
Practical: - 04 Hours/ Week	Term Work	100 Marks	- 06
	Oral/Practical	100 Marks	00
	Total	200 Marks	06

Course	The students should have knowledge of
Prerequisites: -	1. Knowledge of basic concepts in Robot Programing.
-	2. Basic information of fundamentals of robotics.
	3. Basic knowledge of Data Structures and Algorithm.
	4. Knowledge of basic concepts in Robotics & Automation Engineering
	5. Basic knowledge of robot design
Course Objectives: -	1. To fabricate the designed equipment
	2. To conduct laboratory and field testing of the new equipment
	3. To analyze performance of the equipment with different performance
	parameters
	4. To make changes in design if necessary, based on the performance
	analysis
	5. To prepare project report and deliver presentation.
	6. To work sincerely as a member of team
Course Outcomes: -	The students should be able to-
	1. Understand the latest changes in technological world and apply
	fundamental principles of science and engineering.
	2. Create ability to identify, formulate and model problems
	3. Understand importance of sustainability and cost-effectiveness in
	design and development of engineering solution.
	4. Create ability to be multi skilled engineer with a good technical
	knowledge, management, leadership, entrepreneurship skills.
	5. Create awareness of social,
	6. Create ability to communicate efficiently.

Course Contents

Details of Project Stage -II

1. The project taken in the First semester will be continued as far as possible. In case after the training, the students wish to change their project, the same may be allowed after discussion with the faculty. The new project should be based on the training taken and should utilize the training experience.

In Semester II concentration will be on

- Experimentation work
- Testing of equipment's
- Preparing a project report
- 2. The work will be evaluated through three presentations with aim of observing the progress and suggesting modifications for completing the project.