1. Approval of structure for B.Tech (Electronics & Tele-communication) effective from A.Y.2021-22 Semester – I & II

B.Tech (Electronics & Tele-communication) Semester -I & II

- Linear Algebra and Calculus
- Physics for Electronics Engineering
- Electrical Technology
- Elementary Electronics
- > 'C' Programming
- > MATLAB Fundamentals
- Differential Equations and Complex Analysis
- Chemistry of Electronic Materials
- Digital Electronics
- Semiconductor Devices and Circuits-I
- > Python Programming
- Computer Aided Drafting

Resolution:

The structure for the courses at B.Tech (Electronics &Tele-Communication) SemI & Sem II were discussed & finalized as per choice based credit system structure. The same is forwarded to Faculty of Engineering & Technology for consideration.

2. Approval of structure for B.Tech (Electronics & Tele-communication) effective from A.Y.2021-22 Semester -III & IV.

B.Tech (Electronics & Tele-communication) Semester -III & IV

- Advanced Mathematics-for Electronics
- Semiconductor Devices and Circuits-II
- Signals and Linear Systems
- Network Analysis and Synthesis
- Database Management Systems*
- EDA Tool Practices
- PCB Design and Soldering

- Vocational Course I: Networking
- ≻ MOOC-I
- Environmental Studies***(Mandatory Audit Course)
- Control Systems and Application
- Integrated Circuits and Applications
- Electromagnetics and Transmission Lines
- Analog Communication
- Data Science**
- Advanced Computer Programming
- Sensor Modelling and Simulation Laboratory
- Vocational Course-II Calibration and repair of lab equipments
- Social Activities-I
- Disaster Management***(Mandatory Audit Course)

*Industry taught course-I

- **Industry taught course-II
- ***100 marks end semester exam

Resolution:

The structure for the courses at B.Tech (Electronics &Tele-Communication) Sem III & Sem IV were discussed & finalized as per choice based credit system structure. The same is forwarded to Faculty of Engineering & Technology for consideration.

3. Approval of structure for B.Tech (Electronics & Tele-communication) effective from A.Y.2021-22 Semester -V&VI.

B.Tech (Electronics & Tele-Communication) Semester -V & VI

- Embedded systems
- Digital Communication System
- Power Electronics
- Microwave and Antenna

- Data Communication and Networking*
- Microcontroller Programming
- ➢ Project-I-Stage −I
- Vocational course III: PLC
- ≻ MOOC- II
- > Photonics
- > Quantitative techniques, Communication and Values
- Digital Signal Processing
- CMOS Design
- ➢ Internet of Things**
- > VHDL
- Project-I- Stage-II
- Vocational 4: Web App development
- ➤ *** Internship

*Industry taught course-III

**Industry taught course-IV

Resolution:

The structure for the courses at B.Tech (Electronics &Tele-Communication) Sem V&VI were discussed & finalized as per choice based credit system structure. The same is forwarded to Faculty of Engineering & Technology for consideration.

4. Approval of structure for B. Tech (Electronics & Tele-communication) effective from A.Y.2021-22 Semester –VII&VIII.

B.Tech (Electronics & Tele-Communication) Semester -VII& VIII

- > Soft Computing
- Radio Frequency Engineering
- ➢ Elective- I
- Industrial Wireless Sensor Network*

- Project II-Stage I
- Electronic Product Design
- > Research paper publication
- ➢ MOOC-III
- > Mobile Communication
- ➢ Satellite Communication & Radar
- ➢ Elective II
- ➢ Cyber security**
- Cloud Computing
- Project –II-Stage-II
- Social Activities-II

Professional Elective-I	i)	Telecom Network Management	ii) Advanced Embedded System Design	iii)	Image	processing
Tioressional Elective-I		relection wetwork management	ii) Advanced Embedded System Design		mage	processing

Professional Elective-II i) Software Defined Radio ii) Automotive Electronics iii) Computer Vision

*Industry taught course-V **Industry taught course-VI

Resolution:

The structure for the courses at B.Tech (Electronics &Tele-Communication) Sem VII&VIII were discussed & finalized as per choice based credit system structure. The same is forwarded to Faculty of Engineering & Technology for consideration.

Bharati Vidyapeeth (Deemed to be) University, Pune

Faculty of Engineering & Technology

		Programme :B.Tech (E &Tc) Sem – I (2021 Course)												
Sr. No.	Name of the course] Sch	Feachi ieme (l Weeł	ng Hrs. / K		Examination	Schem	e (Marks)				C	redits	
		L	Р	т	UE	IA	тw	TW& OR	TW& PR	Total	L	P TW/O R/PR	Т	Total
1	Linear Algebra and Calculus	03	00	01	60	40	00	00	00	100	03	00	01	04
2	Physics for Electronics Engineering	03	02	00	60	40	50	00	00	150	03	01	00	04
3	Electrical Technology	04	02	00	60	40	50	00	00	150	04	01	00	05
4	Elementary Electronics	04	02	00	60	40	00	50	00	150	04	01	00	05
5	'C' Programming	04	02	00	60	40	50	00	00	150	04	01	00	05
6	MATLAB Fundamentals	00	04	00	00	00	50	00	00	50	00	02	00	02
	Total	18	12	01	300	200	200	50	00	750	18	06	01	25

Bharati Vidyapeeth (Deemed to be) University, Pune. Faculty of Engineering & Technology

			Programme :B.Tech (E &Tc) S								l Course)			
Sr. No •	Name of the course	Scł	Teachi neme (1 Weel	ng Hrs. / k	Е	xamination Sc	cheme (M	larks)				Cre	edits	
		L	Р	Т	UE	IA	TW	TW & OR	TW& PR	Total	L	P TW/O R/PR	Т	Total
7	Differential Equations and Complex Analysis	03	00	01	60	40	00	00	00	100	03	00	01	04
8	Chemistry of Electronic Materials	03	02	00	60	40	50	00	00	150	03	01	00	04
9	Digital Electronics	04	02	00	60	40	00	50	00	150	04	01	00	05
10	Semiconduct or Devices and Circuits-I	04	02	00	60	40	00	00	50	150	04	01	00	05
11	Python Programming	04	02	00	60	40	50	00	00	150	04	01	00	05
12	Computer Aided Drafting	00	04	00	00	00	50	00	00	50	00	02	00	02
	Total	18	12	01	300	200	150	50	50	750	18	06	01	25

Bharati Vidyapeeth (Deemed to be) University, Pune Faculty of Engineering & Technology

	Programme :B.Tech (E &Tc) Sem – III (2021 Course)													
Sr. No.	Name of the course	Scł	Feachin teme (H Week	ng Irs. /]	Examination Sci	heme (M	arks)				Cre	dits	
		_	_	_				TW	TW&		_	Р		
		L	Р	Т	UE	IA	TW	& OR	PR	Total	L	TW/O R/PR	Т	Total
13	Advanced Mathematics- for Electronics	03	00	01	60	40	00	00	00	100	03	00	01	04
14	Semiconductor Devices and Circuits-II	04	02	00	60	40	00	00	50	150	04	01	00	05
15	Signals and Linear Systems	04	02	00	60	40	25	00	00	125	04	01	00	05
16	Network Analysis and Synthesis	04	02	00	60	40	00	00	50	150	04	01	00	05
17	Database Management Systems*	03	02	00	60	40	25	00	00	125	03	01	00	04
18	EDA Tool Practices	00	02	00	00	00	50	00	00	50	00	01	00	01
19	PCB Design and Soldering	00	04	00	00	00	00	50	00	50	00	02	00	02
20	Vocational Course - I: Networking	00	00	00	00	00	00	50	00	50	00	02	00	02
21	MOOC-I	00	00	00	00	00	00	00	00	00	00	00	00	02
22	Environmental Studies** (Mandatory Audit Course)	00	00	00	00	00	00	00	00	00	00	00	00	00
	Total	Total 18 14				200	100	100	100	800	18	09	01	30

*Industry taught course-I

**100 marks end semester exam

Bharati Vidyapeeth (Deemed to be) University, Pune

Faculty of Engineering & Technology

	Programme :B.Tech (E &Tc) Sem – IV (2021 Course)													
Sr. No.	Name of the course	T Sch	Teachir Ieme H Week	ng Trs. /	Exa	mination	Schem	e (Marks	5)	Total Marks		Cred	lits	
		L	Р	Т	UE	IA	TW	TW& OR	TW& PR	Total	L	P TW/OR/ PR	Т	Total
23	Control Systems and Application	04	02	00	60	40	25	00	00	125	04	01	00	05
24	Integrated Circuits and Applications	04	02	00	60	40	00	00	50	150	04	01	00	05
25	Electromagnetics and Transmission Lines	03	00	01	60	40	00	00	00	100	03	00	01	04
26	Analog Communication	04	02	00	60	40	00	50	00	150	04	01	00	05
27	Data Science*	03	02	00	60	40	25	00	00	125	03	01	00	04
28	Advanced Computer Programming	00	04	00	00	00	00	50	00	50	00	02	00	02
29	Sensor Modelling and Simulation Laboratory	00	02	00	00	00	00	50	00	50	00	01	00	01
30	Vocational Course-II Calibration and repair of lab equipments	00	00	00	00	00	00	50	00	50	00	02	00	02
31	Social Activities-I	00	00	00	00	00	00	00	00	00	00	00	00	02
32	Disaster Management** (Mandatory Audit Course)	00	00	00	00	00	00	00	00	00	00	00	00	00
	Total	18	14	01	300	200	50	200	50	800	18	09	01	30

*Industry taught course-II

**100 marks end semester exam

Bharati Vidyapeeth (Deemed to be) University, Pune.

Faculty of Engineering & Technology

	Programme :B.Tech (E &Tc) Sem – V (2021 Course)													
Sr. No.	Name of the course	ame of the course Hrs. / Week E						larks)		Total Marks		Cre	Credits	
		L	Р	Т	UE	IA	TW	TW & OR	TW & PR	Total	L	P TW/OR/ PR	Т	Total
33	Embedded systems	03	02	00	60	40	00	50	00	150	03	01	00	04
34	Digital Communication System	03	02	00	60	40	25	00	00	125	03	01	00	04
35	Power Electronics	03	02	00	60	40	25	00	00	125	03	01	00	04
36	Microwave and Antenna	04	02	00	60	40	00	50	00	150	04	01	00	05
37	Data Communication and Networking *	03	00	00	60	40	00	00	00	100	03	00	00	03
38	Microcontroller Programming	00	04	00	00	00	00	00	50	50	00	02	00	02
39	Project-I Stage –I	00	02	00	00	00	00	100	00	100	00	04	00	04
40	Vocational course III: PLC	00	00	00	00	00	00	50	00	50	00	02	00	02
41	MOOC- II	00	00	00	00	00	00	00	00	00	00	00	00	02
	Total	16	14	00	300	200	50	250	50	850	16	12	00	30

*Industry taught course-III

Bharati Vidyapeeth (Deemed to be) University, Pune

Faculty of Engineering & Technology

	Programme :B.Tech (E &Tc) Sem – VI (2021 Course)													
Sr. No.	Name of the course	Teach Hrs	ing Sch s. / Wee	eme k	Exa	amination Sche	eme (Ma		Total Marks		Cre	dits		
		L	Р	Т	UE	ΙΑ	TW	TW & OR	TW & PR	Total	L	P TW/O R/PR	Т	Total
42	Photonics	04	02	00	60	40	25	00	00	125	04	01	00	05
43	Quantitative techniques, Communication and Values	02	02	00	60	40	00	00	00	100	03	00	00	03
44	Digital Signal Processing	03	02	00	60	40	25	00	00	125	03	01	00	04
45	CMOS Design	04	02	00	60	40	00	50	00	150	04	01	00	05
46	Internet of Things*	03	00	00	60	40	00	00	00	100	03	00	00	03
47	VHDL	00	02	00	00	00	00	00	50	50	00	01	00	01
48	Project-I Stage-II	00	02	00	00	00	00	100	00	100	00	04	00	04
49	*Vocational 4: Web App development	00	00	00	00	00	00	50	00	50	00	02	00	02
50	*** Internship	00	00	00	00	00	00	50	00	50	00	03	00	03
	Total	16	12	00	300	200	50	250	50	850	17	13	00	30

*Industry taught course-IV

Bharati Vidyapeeth (Deemed to be) University, Pune

Faculty of Engineering & Technology

	Programme :B.Tech (E &Tc) Sem – VII (2021 Course)													
Sr. No.	Name of the course	Teachi	ng Schei / Week	me Hrs.		Examination S	cheme (M	arks)		Total Marks		Cred	its	
		т	р	т	UF	IA	TW	TW&	TW	Total	т	Р	т	Total
					ŬĔ	IA	1 **	OR	PR	Total	Ľ	TW/OR/P R	1	10141
51	Soft Computing	04	02	00	60	40	00	00	50	150	04	01	00	05
52	Radio Frequency Engineering	04	00	01	60	40	00	00	00	100	04	00	01	05
53	Elective- I	04	02	00	60	40	00	50	00	150	04	01	00	05
54	Industrial Wireless Sensor Network*	04	02	00	60	40	00	50	00	150	04	01	00	05
55	Project II Stage I	00	04	00	00	00	00	200	00	200	00	04	00	04
56	Electronic Product Design	00	04	00	00	00	00	100	00	100	00	02	00	02
57	Research paper publication	00	00	00	00	00	00	00	00	00	00	00	00	02
58	MOOC-III	00	00	00	00	00	00	00	00	00	00	00	00	02
	Total	16	14 01 240 160 00 400 50 850							16	09	01	30	

Elective-I

1) Telecom Network Management

2) Advanced Embedded System Design

3) Image processing

*Industry taught course-V

Bharati Vidyapeeth (Deemed to be) University, Pune Faculty of Engineering & Technology

	Programme:B.Tech (E &Tc) Sem – VIII (2021 Course)													
Sr. No.	Name of the course	T Sch	eachiı eme H Week	ng [rs. /	E	kamination (Scheme (M	(arks)		Total Marks		Cred	lits	
		L	Р	Т	UE	IA	TW	TW & OR	TW & PR	Total	L	P TW/OR/P R	Т	Total
59	Mobile Communication	04	02	00	60	40	00	50	00	150	04	01	00	05
60	Satellite Communication & Radar	04	02	00	60	40	00	00	50	150	04	01	00	05
61	Elective II	04	02	00	60	40	00	50	00	150	04	01	00	05
62	Cyber security*	04	00	01	60	40	00	00	00	100	04	00	01	05
63	Cloud Computing	00	04	00	00	00	00	100	00	100	00	02	00	02
64	Project -II Stage-II	00	04	00	00	00	00	200	00	200	00	06	00	06
65	Social Activities-II	00	00	00	00	00	00	00	00	00	00	00	00	02
	Total	16	14	01	240	160	00	400	50	850	16	11	01	30

Elective-II

1) Software Defined Radio

2) Automotive Electronics

3) Computer Vision

*Industry taught course-VI

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

		B. 7	Tech. Sem. I: Electronics & Telecon	nmunication Engineering					
			SUBJECT: - LINEAR ALGEBR	A and CALCULUS					
TEACH	HING SC	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:					
Theory:	03		End Semester Examination: 60 Marks	Credits: 03					
Practica	ıl: 00		Internal Assessment: 40 Marks						
Tutorial	l: 01			Credits: 01					
				Total Credit: 04					
Course	Pre-req	uisites: Class X	XII Mathematics						
Course	Objectiv	ves:							
1.		To teach the d	lifferential calculus.						
2.		To teach linea	r algebra and linear transformation.						
3.		To introduce of	ordinary differential equations.						
Course	Outcom	es: After lea	rning this course students will be able to						
1	Evaluat	e the matrices a	and its application to the system of linear equ	nations.					
2	2 Evaluate vector spaces and linear transformation								
3	Solve n	umerical proble	ems involving differential calculus.						
4	Comput	te maxima, min	ima, and multiple integrals.						
5	Evaluat	e the theorems	in integral Calculus.						

6	Use the	methods of first order and first-degree differential equation.	
	т.		(0 (1 ,)
UNII –	• 1	Linear algebra: Matrices	(06 Hours)
		Algebra of Matrices, System of Linear Equations, Linear Dependence and Independence, rank,	
		row operations and Gauss elimination, Applications to systems of linear equations, Cayley -	
		Hamilton Theorem	
UNIT _	. 11	Vector space and Linear Transformations	(06 Hours)
		vector space and Emean Transformations	(00 11001 5)
		Vector spaces, subspaces, Eigen values and Eigen Vectors and their basic properties, Linear and	
		Orthogonal Transformations, rank -nullity theorem, Existence and Uniqueness Theorem for	
		Linear Systems, product spaces, Gram-Schmidt process, Diagonalization	
UNIT -	III	Differential Calculus	(06 Hours)
		Limits of sequences and functions, continuity, uniform continuity and differentiability, Mean	
		value theorems, L' Hospital's Rule. Euler's Theorem on Homogeneous Functions. Taylor's	
		theorem with proof, Partial derivatives, Chain rule.	
UNIT -I	IV	Maxima and Minima for several	(06 Hours)
		Maxima, minima, saddle points. gradient, directional derivatives, Lagrange multipliers, Exact	
		differentials, Errors, and approximations. Repeated and multiple integrals applications to volume,	
		surface area, moments of inertia, etc.	

UNIT -V	Integral Calculus	(06 Hours)
	Riemann integral and the fundamental theorem of integral calculus, Rolle's theorem, Applications	
	to length, area, volume, surface area of revolution. Moments, centers of mass and gravity.	
UNIT -VI	Ordinary differential equation	(06 Hours)
	Ordinary differential equations of the 1st order, exactness and integrating factors, applications of	
	first order and first-degree differential equation in orthogonal trajectories and electrical circuits.	
	Picard's iteration method.	
Topics for proj	ets based learning*	
1. Cramer's rule		
2. System of line	ear equations solution	
3. Rank of matri	X	
4. Gauss elimina	ition	
5. LU-decompos	sition method	
6. Dimension an	d basis	
7. Gram Schmid	t Orthogonalization	
8. rank -nullity t	heorem	
9. Euler's Theore	em on Homogeneous Functions	
10. Maxima and	minima for two variable function	
11. Eigen values	and Eigen vectors	
12. Williple life	f differential equation	
14. Linear differ	ential equation	
15 Kirchhoff's	voltage law	
*Students in a gro	bup of 3 to 4 shall complete any one project from the above list	

Textbooks/Reference Books

1.'Advanced Engineering Mathematics' by Erwin reyszig

2.'Advanced Engineering Mathematics' by Dennis G. Zill and Warren S. Wright

3.AppliedMathematics(VolumesIandII)byP.N.Wartikar&J.N.Wartikar

4.HigherEngineeringMathematicsbyB.S.Grewal

5.HigherEngineeringMathematicsbyB.V.Ramana

6.AdvancedEngineeringMathematics

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

	B. Tech. Sem. I: Electronics & Telecommunication Engineering				
		SUBJECT: - PHYSICS FOR ELECTR	ONICS ENGINEERING		
TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory: 03		End Semester Examination: 60 Marks	Credits: 03		
Practical: 02		Internal Assessment: 40 Marks			
Tutorial: 00		TW: 50 Marks	Credit: 01		
			Total Credit: 04		
Course Pre-	requisites:				
	Basic Physics	s and Calculus.			
Course Obje	ectives:				
	To impart kr	nowledge of basic concepts in physics releva	nt to engineering applications in a broader sense with a		
	view to lay fo	oundation for the Electronics and Telecommu	nication.		
Course Outo	comes:				
After learnin	ng this course stu	dents will be able to			
1 Dem	nonstrate the know	vledge of properties of charged particles and the	neir use in modern instruments		
2 Solv	e the quantum ph	ysics problemsat micro level phenomena.			
3 Exp	lain mechanical p	roperties of solid matter and connect to applic	ations in the field of engineering.		
4 Dem	nonstrate the work	ing of PN junctions in semiconductor devices	under various conditions.		

5	Demon	nonstrate the wave nature of light and apply it to measure stress, pressure and dimension.	
6	Analyz	e the problems associated with architectural acoustics and give their remedies.	
	•		
UNIT -	- I	Modern Physics	(06 Hours)
		Motion of a charged particle in electric and magnetic fields, Electrostatic and Magnetostatic	
		focusing, Electron microscope, Wavelength and resolution, Specimen limitation, Depth of field	
		and focus, TEM, SEM and EDS, Separation of isotopes by Bainbridge mass spectrograph, CRT.	
UNIT -	- II	Quantum mechanics	(06 Hours)
		Dual nature of matter, concept of wave packet, group and phase velocity and relation between	
		them, Physical significance of wave function, Schrodinger's time dependent and time	
		independent wave equation, Application of Schrodinger's time independent wave equation to the	
		problems of Particle in a rigid box, Applications of Schrodinger's Equation: Infinite Potential	
		Well and the Potential Barrier.	
UNIT -	· III	Solid state Electronics-I	(06 Hours)
		Superconductors, properties, Meissner effect, Type I and Type II superconductors, BCS theory of	
		superconductivity (Qualitative) - High Tc superconductors - Applications of superconductors -	
		SQUID, cryotron, magnetic levitation.	
		Formation of Energy Bands, E-k Diagram, Origin of band gap, Energy bands in solids, Effective	
		mass of electron, Fermi-Dirac Distribution, Conductivity in conductor and semi-conductors.	
1			

UNIT -IV	Solid State Electronics-II	(06 Hours)
	Review of intrinsic and Extrinsic semiconductors, The no and po equations, Drift and Diffusion	
	Currents, Regeneration process, Recombination Process, Derivation of Current Continuity	
	Equation, Position of Fermi level in intrinsic semi-conductors (with derivation) and in extrinsic	
	semi-conductors, Minority Carrier injection and recombination in Homogeneous Semiconductor,	
	p-n junction formation, Band structure of p-n junction diode under forward and reverse biasing,	
	Junction Capacitance, Photovoltaic effect, Solar cell and its characteristics.	
UNIT -V	Interference, Diffraction and Polarization	(06 Hours)
	Interference: Interference due to thin film of uniform thickness, engineering applications of	
	interference (optical flatness, non-reflecting coatings).	
	Diffraction: Diffraction at a single slit (Geometrical method), Conditions for maximum and	
	minimum, Diffraction at a circular aperture (Result only), Plane diffraction grating, Conditions	
	for principal maxima and minima.	
	Polarization: Introduction, Double refraction and Huygen's theory, Positive and negative	
	crystals, Nicol prism	
UNIT -VI	Acoustics	(06 Hours)
	Elementary Acoustics, reverberation and reverberation time, Sabine's formula, pressure and	
	intensity level, different types of noise and their remedies, Electro Acoustic transducers	

(piezoelectric transducers, electrostatic transducer, magnetic transducer, magneto strictive transducer), Types of Microphones, Loudspeaker, stereophony, sound recording and Sound reinforcement systems.

Lab Experiment :(Any Eight of the Following)

- 1. Study of Lissajous figure by Cathode Ray Oscilloscope (CRO)
- 2. Determination of e/m by Thomson method.
- 3. Plotting the hysteresis loop for given magnetic material.
- 4. To study Hall effect and determine the Hall voltage.
- 5. Calculation of conductivity by four probe methods.
- 6. Study of solar cell characteristics and calculation of fill factor.
- 7. Determination of band gap of semiconductor.
- 8. Determination of radius of Plano convex lens/wavelength of light/Flatness testing by Newton's rings
- 9. Determination of wavelength of light using diffraction grating.
- 10. Determination of resolving power of telescope.
- 11. Determination of thickness of a thin wire by air wedge.
- 12. Determination of refractive index for O-ray and E-ray.
- 13. To determine the velocity of sound.
- 14. Measurement of average SPL across spherical wavefront and behavior with the distance.
- 15. Expansion chamber muffler: investigation of muffler response as a filter in the low frequency approximation by determining insertion loss.
- 16. Interference of sound using PC speakers.

Assignments

Six assignments to be given by the subject teacher (Theory)-one from each unit/one mini project with report-students can work in group of 4 Maximum

Topics for projets based learning*

1. Design and simulation of automatic solar powered time regulated water pumping

2. Solar technology: an alternative source of energy for national development

3. Comparison of various method used in measuring the gravitational constant g

4. Possible effects of electromagnetic fields (emf) on human health

5. The design and construction of the hearing aid device

6. Design and construction of digital distance measuring instrument

7. Design and construction of automatic bell ringer

8. Design and construction of sound or clap activated alarm

9. Electronic eye (Laser Security) as autoswitch/security system

10. Electric power generation by road power

11. Wireless power transfer

12. Determination of velocity of O-ray and E-ray in different double refracting materials

13. Quantum confinement effect in wide band semiconductors

14. Tesla Coil

15. LiFi- wireless data transfer system using light

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

1. A Textbook of Engineering Physics, <u>M N Avadhanulu</u>, <u>P G Kshirsagar</u> and <u>TVS Arun Murthy</u>, S. Chand Publishing (2018).

2. Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publishing Co Pvt Ltd (2015)

3. Concepts of Modern Physics, Arthur Beiser, Shobhit Mahajan and S. Rai Choudhury, McGraw Hill Education (2017)

Reference Books:

1. Fundamentals of Physics, Jearl Walker, David Halliday and Robert Resnick, John Wiley and Sons (2013)

2. Optics, <u>Francis Jenkins</u> and <u>Harvey White</u>, Tata Mcgraw Hill (2017)

3. Principles of Physics, John W. Jewett, Cengage publishing (2013)

4. Introduction to Solid State Physics, C. Kittel, Wiley and Sons (2004)

5. Principles of Solid-State Physics, H. V. Keer, New Age International (1993)

6. Laser and Non-Linear Optics, B. B. Laud, New Age International Private Limited (2011)

7. Nanotechnology: Principles and Practices, Dr. S. K. Kulkarni, Capital Publishing Company (2014)

8. Science of Engineering Materials- C.M. Srivastava and C. Srinivasan, New Age International Pvt. Ltd. (1997)

9. Introduction to Electrodynamics – David R. Griffiths, Pearson (2013)

10. Renewable Energy: Power for a Sustainable Future, <u>Boyle</u>, Oxford University Press (2012)

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

	B. Tech. Sem. I: Electronics & Telecommunication Engineering					
	SUBJECT: - ELECTRICAL TECHNOLOGY					
TEAC	HING S	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory: 04			End Semester Examination: 60 Marks	Credits :04		
Practica	al: 02		Internal Assessment: 40 Marks			
Tutoria	1:00		TW: 50 Marks	Credit: 01		
				Total Credits: 5		
		• • /				
Course	e Pre-req	uisites:				
		Physics and M	athematics			
C						
Course	Objecti	ves:	1 , 1 , 1 , 1 , 1			
1.		To introduce fi	undamental concepts, various laws-principl	es and theorems associated with electrical systems.		
2.		To impart basi	c knowledge of all electrical quantities such	as current, voltage, power, energy, frequency along with		
		different types	of fields.			
3.		To provide kn	nowledge about fundamental parameters such as resistance, inductance and capacitance and magr			
		circuits, AC an	nd DC circuits			
4. To provide knowledge of Electrical Measurement technique and Electrical Safety Practices.		ue and Electrical Safety Practices.				
Course	Outcon	nes: After lea	rning this course students will be able to			
1	Calcula	ate the circuit pa	arameters using dc network theorems.			
2	Demon	strate the know	ledge of various parameters related to mag	netic circuit and single-phase ac circuits.		
3	Classif	y the various pa	rameters of 3-phase AC circuits and apply	the concepts of single-phase transformer.		

4	Demo	Demonstrate the knowledge of various power generation and transmission techniques.		
5	Explai	n the Construction and working principle of DC and AC machines.		
6	Apply the various measurement techniques of circuit parameters and safety norms.			
UNIT -	- I	DC Circuit Analysis and Network Theorems:	(08 Hours)	
		Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources,		
	concept of linearity and linear network, unilateral and bilateral elements, R, L and C as linear			
		elements, source transformation. Kirchhoff's laws; loop and nodal methods of analysis; star-delta		
		transformation; Network Theorems: Superposition Theorem, Thevenin's Theorem, Norton's		
		Theorem, Maximum Power Transfer Theorem (simple numerical problems).		
UNIT -	- II	Magnetic Circuit and Single-Phase AC Circuits	(08 Hours)	
		Magnetic Circuit: Magnetic circuit concepts, analogy between electric & magnetic circuits,		
		magnetic circuits with DC and AC excitations, magnetic leakage, B-H curve, hysteresis and eddy		
		current losses, magnetic circuit calculations, mutual coupling		
		Single Phase AC Circuits: AC Fundamentals: Sinusoidal, square and triangular waveforms -		
		average and effective values, form and peak factors, concept of phasors, phasor representation of		
		sinusoidally varying voltage and current. Analysis of series, parallel and series parallel RLC		
		Circuits: apparent, active & reactive powers, power factor, causes and problems of low power		
		factor, power factor improvement; resonance in series and parallel circuits, quality factor (simple		
		numerical problems		
UNIT -	III	Three Phase AC Circuits:	(08 Hours)	
		Three Phase AC Circuits: Three phase system-its necessity and advantages, meaning of phase		
		sequence, star and delta connections, balanced supply and balanced load, line, and phase		
		voltage/current relations (Simple derivations), three-phase power and its measurement (simple		
		numerical problems).		
		Single Phase Transformer: Principle of operation, construction, e.m. f. equation, equivalent		

	circuit, power losses, efficiency (simple numerical problems), introduction to auto transformer.	
	Three phase transformer and its different winding connections	
UNIT -IV	Power Generation and Power System	(08 Hours)
	Power Generation: Power Generation techniques using conventional (Hydro, Thermal, nuclear, Gas) & non-conventional resources (Solar, Wind, biogas).	
	Introduction to Power System: General layout of electrical power system and functions of its elements, standard transmission, and distribution voltages, layout. Concept of grid (elementary treatment only)	
	DC Machines and AC Machines	(08 Hours)
	DC Machines: Principles of electromechanical energy conversion, DC machines: types,	
	Construction & working, e. m. f. equation of generator and torque equation of motor, speed control, characteristics and applications of dc motors (simple numerical problems).	
	AC Machines: Single Phase Induction motor: Principle of operation and introduction to methods of starting, applications. Three Phase Induction Motor: Principle of operation, slip-torque characteristics, applications (numerical problems related to slip only	
UNII -VI	Liectrical Measurement technique	(va Hours)
	Electrical Measurement technique: Electrical instruments such as wattmeter, energy meter,	
	tong-tester, megger, and power analyzer. Measurement of circuit parameters like resistance,	
	inductance and capacitance using DC and AC bridges.	
	Electrical Safety Practises: Electric shock, precautions against shock, First aid for electric shock	
	other hazards of electrical laboratories & safety rules, Objectives of Earthing, types of earthing;	

<u>Term Work:</u>
1. Find the current in the given network using Super position Theorem
2. Find the current in the given network using Thevenin's and Notton's Theorem
3. To Plot the B-H characteristics for a magnetic material
4. To find the voltage and current relationships in R-L series, R-C series, R-L-C series circuit
5. To find the voltage and current relationships in R-L-C series resonance circuit.
6. Verification of voltage and current relationships in star and delta connected 3-phase networks
7. To find efficiency and regulation of single-phase transformer
8. To control the speed of DC shunt motor using fulx control and armature voltage control method.
9. To control the speed of DC shunt motor using fulx control and armature voltage control method.
10. Find the unknown resistance using Kelvin's double bridge.
11. Find the unknown inductance using Anderson's bridge.
12. Measurement of power and energy in single phase ac circuit.
Note: The term work shall be the record of minimum eight experiments performed from the above list.
Topics for projets based learning*
1.Design a small circuit for superposition theorem.
2. Design small circuit to study Thevenin's Theorem.
3. Design Small circuit to study Norton's Theorem.
4. Design small circuit to study R-C series circuit.
5. Design small circuit to study R-L series circuit.
6. Design small circuit to study R-L-C series circuit.
7. Design of Tesla Coil.
8. Design small two winding transformer.
9. Design small electromagnet.
10. Design a small doorbell.

pipe and plate earthing, Residual current circuit breaker (RCCB).

11. Design of wireless power transmission.

12. Design of electric buzzer.

13. Design of small wind farm.

14. Design of small solar power plant.

15. Design of small galvanometer.

*Students in a group of 3 to 4 shall complete any one project from the above list

Text-books:

1. Electrical Technology - Edward Huges (Pearson

1. Basic Electrical Engineering - D. P. Kothari, J Nagarath (TMC)

2. Electrical power system technology - S. W. Fordo, D. R. Patric (Prentice Hall)

Reference Books:

1. Principles of Electronics-Dr. H. M. Rai (Satya Prakashan)

2. Electronic Devices and Circuit Theory- R. L. Boylestad and L. Nashelsky (PHI)

3. Electrical, Electronics Measurements and Instruments - (SatyaPrakashan)

4. Principles of Communication Engineering - Anokh Singh, A. K. Chhabra (S Chand)

5. Electrical Technology - Volume I & volume – II by B L Theraja and AK Theraja(S Chand)

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

	B. Tech. Sem. I: Electronics & Telecommunication Engineering			
		SUBJECT: - ELEMENTRY	ELECTRONICS	
TEACHING SO	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 04		End Semester Examination: 60 Marks	Credits: 04	
Practical: 02		Internal Assessment: 40 Marks		
Tutorial: 00		TW & OR: 50 Marks	Credit: 01	
			Total Credit: 05	
Course Pre-req	uisites:			
	Physics, Cher	nistry, Mathematics (Class XII)		
Course Objecti	ves:			
1.	To teach the	construction, working, ratings and applica	tion of passive devices like resistors, capacitors, inductors,	
	transformers,	and relays		
2.	To introduce	types of Voltage and current sources		
3.	To teach the	construction, working and ratings of dev	ices like PNjunction diode, Schottky diode, Zener diode,	
	bipolar junction	on transistor		
4.	To teach the c	construction, working and ratings of field e	fect transistor and MOSFET	
5.	To teach the	construction, working and ratings of op	toelectronic devices like LDR, LED, phototransistor, and	
	photovoltaic c	cell		
6.	To introduce t EDA tool.	the concept of grounding and shielding, PC	B layout design, PCB fabrication process, with the aid of an	

Course	Outcom	es: After learning this course students will be able to	
1	Classify resistors, capacitors, inductors, and transformer based on their construction, types and ratings and analyze simple consisting of passive devices		
2	Analyze	circuits using voltage and current sources	
3	Classify	active devices based on their types and ratings and plot their characteristic curves	
4	Classify	optoelectronic devices based on their types and ratings and plot their characteristic curves.	
5	Use the	concepts of grounding and shielding while designing PCB, explain the PCB design and fabrication and assem	bly process
6	Use ED.	A tools for designing single sided PCB for simple circuits	
UNIT -	- I	Passive Electronic Components	(08 Hours)
		Introduction to the concept of active and passive electronic devices, Types of resistors, construction, ratings and typical applications, Types of capacitors, construction, ratings and typical applications, Types of inductors, construction, ratings and typical applications, Types of transformers, construction, ratings and typical applications, Construction of relays, types and ratings, Analysis of series and parallel resistors and capacitor circuits	
UNIT -	- II	Sources	(08 Hours)
		Types of voltage and current sources (AC and DC), Concept of ideal and non-ideal voltage source, Concept of ideal and non-ideal current source, Series and parallel combinations of sources, Loading effect, Dependent voltage and current sources, Electrochemical cells and batteries, Types and characteristics, Regulation concept (Line regulation, load regulation, temperature stability factor)	

UNIT - III	Diodes and BJT	(08 Hours)
	Classification of material based on band gap theory, Types of semiconductors (p-type and n- type), PN junction diode and its characteristics, Schottky diode, Zener diode, Diode models, Concept of DC and AC load line and ratings of PN junction diode, Introduction to BJT (NPN and PNP) and its construction and working mechanism, BJT configurations and their input and output characteristics, Types and ratings of BJT	
		(0.0
UNIT -IV	FET and MOSFET	(08 Hours)
	Construction and working mechanism of FET, Input and output characteristics of FET, FET configurations, Ratings of FET, Construction and working of DMOSFET and EMOSFET, Characteristics of DMOSFET and EMOSFET, Configurations and ratings of EMOSFET	
UNIT -V	Opto-Electronics	(08 Hours)
	Construction and working of LDR and its characteristics, simple application, Construction and working of LED and its characteristics and ratings, Photo-transistor and its characteristics, Introduction to the concept of electrical isolation and its importance, Construction of opto-isolator(opto-coupler) and its ratings, Construction and working of photovoltaic cell and its characteristics and ratings	
UNIT -VI	PCB (Printed Circuit Board)	(08 Hours)
	Concept of grounding, shielding and its importance, building blocks of PCB (track, pads, fills) and design rules, PCB fabrication and assembly, Introduction to EDA tool for artwork design of a simple single sided PCB Soldering: Types of solder alloys, soldering equipment, specifications of solder alloys	
List of experim	ments:	

- 1. Study of resistors, capacitors, and inductors
- 2. Plot V-I Characteristics of PN Junction Diode
- 3. Plot V-I Characteristics of Zener Diode
- 4. Plot Input and Output Characteristics of BJT in CE Configuration
- 5. Plot Transfer and output characteristics of FET
- 6. Plot Transfer and output characteristics of EMOSFET
- 7. Plot characteristics of LDR
- 8. Plot characteristics of Opto-isolator
- 9. Study of Relays

Topics for projets based learning*

1. Survey report of types of resistors, capacitors, transformers their form factors, specifications and price

2.Survey report of types of batteries, their form factors, specifications and price

3.Survey report of types of low power relays, their form factors, specifications and price

4.Survey report of types of diodes, BJT, MOSFET, their form factors, specifications and price

5.Build a shunt regulator and measure its line and load regulation

6.Build a full-wave rectifier with capacitor input filter and test it

7.Build a small signal voltage amplifier (BJT) and test it

8.Build a switch using BJT, MOSFET, relay and test it

9.Build a simple day light switch with an LDR, BJT and Relay

10.Build a motion sensor switch

11.Build a fire alarm circuit

12.Implement and test a given circuit on a general purpose PCB

13.Build a simple water level indicator

14.Build a simple temperature indicator

15.Build a LED Light Bulb Circuit

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books/ Reference Books:

1. Passive Components for Circuit Design, Ian Sinclair, 1st Edition 2000, ISBN: 9780750649339, Newnes

2Grob's Basic Electronics, Mitchel Schultz,11th Edition,2010, ISBN-13: 978-0-07-351085-9, McGraw Hill

3. Fundamentals of Electronic Devices and Circuits, David A. Bell, 5th Edition, 2008, Oxford University Press,

4Microelectronics Circuits, Adel S. Sedra& Kenneth C. Smith,7th Edition, 2015,Oxford University Press

5.Linden's Handbook of Batteries, Thomas Reddy,4th Editiion,2010, ISBN: 978-0-07-162419-0, McGraw Hill

6.Printed circuit boards: design, fabrication, assembly and testing, Raghbir Singh Khandpur,2006, ISBN 10:0071464204, McGraw Hill

7. The Circuit Designer's Companion, Peter Wilson, 4th Edition, 2017, ISBN: 978-0-08-101764-7, Newnes

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

	B. Tech. Sem. I: Electronics & Telecommunication Engineering				
			SUBJECT: - C PROG	RAMMING	
TEACI	HING SC	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory:	: 04		End Semester Examination: 60 Marks	Credits: 04	
Practica	al: 02		Internal Assessment: 40 Marks		
Tutorial	1: 00		TW: 50 Marks	Credit: 01	
				Total Credit: 5	
Course	Pre-req	uisites:	·		
		Flow charts			
~					
Course	Objectiv	ves:			
		• A stud	ent will gain a thorough understanding o	of the fundamentals of C programming.	
		 A stud 	ent will be able to code, compile, and tes	st C programs.	
		A Stuc	lent will be able to solve Problems using	C language.	
Course	Outcom	es: After lea	rning this course students will be able	to	
1	Apply th	e basic concepts	of programming using C language.		
2	2 Write basic programs using conditional statement.				
3	3 Use 2 D Array in programming				
4	4 Create functions and Pass parameters.				
5	5 Construct structures using Pointers.				
6	6 Apply basic concepts of graphics using C language.				
UNIT -	UNIT – I Introduction Basic of C (08 Hours)				

	Structure of a C program, identifiers, basic data types and sizes. Constants, variables, arithmetic, relational	
	and logical operators Managing input and output operations, Sample programs.	
UNIT – II	Conditional Statements and Loops	(07 Hours)
	Decision making within a program, conditions, if statement, if-else statement, loops: while loop, do while,	
	for loop. Nested loops, infinite loops, switch statement, sample programs	
UNIT - III	Arrays & Strings	
	Arrays - concepts, declaration, definition, accessing elements, storing elements, Strings and string	(08 Hours)
	manipulations, 1-D arrays, 2-D arrays and character arrays, string manipulations, , Array applications:	
	Matrix Operations.	
UNIT -IV	Functions & Pointers	(07 Hours)
	Basics, parameter passing, storage classes- extern, auto, register, static, scope rules, user defined	
	functions, , recursive functions, Recursive solutions for Fibonacci series, example c programs.	
	Passing arrays & strings to functions.	
UNIT -V	Pointers and Structures	(10 Hours)
	Derived types- structures- declaration, definition, and initialization of structures, accessing structures,	
	nested structures, arrays of structures, structures and functions, pointers to structures, self-referential	
	structures, bit-fields, program applications. Different types of stacks and queues.	

UNIT -VI	Basic of Graphics	(08 Hours)
	Introduction, what is computer Graphics? Area of Computer Graphics. Graphics programming, initializing	
	the graphics, C Graphical functions, simple programs	
List of Exper	iments:	
1.		
	• Write a C program to take user Input and print it on the screen.	
	• Write a C program to perform addition or subtraction of two numbers.	
	 Write a C program to find whether the number is Odd or Even. 	
	 Write a C program to find out Prime numbers. 	
	 Write a C program to find out Fibonacci series. 	
2.		
	 Write C programs to print different patterns. 	
	 Write a C program to do factorial using recursion. 	
	 Write a C program to find out Armstrong number 	
3.		
	• Write a C program to sort the array in Ascending & Descending order.	
	 Write C programs to perform operations on 2-D arrays. 	
	 Write a C program to perform different operations on strings. 	
4.		
	 Use of Pointers Write a C program to swap numbers using pointers. 	

5.	Write a C program to show the use of pointers in arrays.				
6.	Write a C program to use functions using pointers.				
7.	Write a C program to create student mark sheet using structures.				
8.	Write a C program to show the use of structure using pointers.				
9.	Write a program showing functions of Graphics programming				
10.	Mini Project.				
Topics for pro	ojets based learning*				
1.Employee Record System Project					
2. Build Calculator (GUI Optional)					
3. Customer Billing System Project:					
4. Medical Store Management System Project					
5. Currency Converter (GUI Optional)					
6. Modern Periodic Table (GUI Optional)					
7. Number System Conversion Project					
8. Phone book / Contact Management System					
9. 100 Years Calender					
10. Hospital Management System Project					
11. Customer Billing system					
12. Tic Tac Toe Game (GUI Optional)					
13. Departmental Store Management.					
14. Build Rock , Paper & Scissors Game (GUI Optional)					
15. Bank Management System					
*Students in a group of 3 to 4 shall complete any one project from the above list					
Text Books:					
1. Programming in ANSI C – E Balagurusamy (5 th Edition-TMH)					
1. Programming in ANSI C – E Balagurusamy (5 th Edition-TMH)					
2. C	Graphics & Projects – By B M Havaldar				
-------------	---	--	--	--	--
Reference	Reference Books:				
1.	Let Us C- Yashwant Kanitkar				
2.	Computer Graphics – By Hearn & Baker				
3.	The C Programming Language. 2nd Edition By Brian Kernighan and Dennis Ritchie				

	B. Tech. Sem. I: Electronics & Telecommunication Engineering					
	SUBJECT: -MATLAB FUNDAMENTALS					
TEACH	ING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:			
Theory: (00	End Semester Examination: 00	Credits: 00			
Practical	: 04	Internal Assessment: 00				
Tutorial:	00	TW: 50 Marks	Credit: 02			
			Total Credit: 02			
Course I	Pre-requisites:					
	Mathematics (Class 2	(II) and Linear Algebra and Calculus				
Course (Objectives:					
1.	To teach basics of MATLAB software and programming.					
2.	To teach the students Vectors, Arrays and Strings in programming					
3.	To introduce Conditional Statements, Loops and Functions					
4.	To teach the stude	ents to perform different operations on M	atrices in programming.			
5.	To introduce MA	TLAB Simulink.				
6. To introduce MA		TLAB GUI.				
Course (Course Outcomes: After learning this course students will be able to					
1 U	1 Use MATLAB for basic programming.					

2	Use Vectors, Arrays and Stringsin programming.
3	Apply knowledge of conditional statements, loops, and functions in programming.
4	Use different operations of Matrices in programming.
5	Design different models using MATLAB Simulink.
6	Design GUI for different applications.
List of	experiments:
1.	Introduction to MATLAB
a)	Basics of MATLAB
2.	Commands, Variables and Operators.
a)	Write a program to perform arithmetic and logical operations on scalar data.
b)	Write a program to display sine and cos wave of particular amplitude and frequency.
3.	Vectors
a)	Write a program to find addition, subtraction, multiplication, transpose, and magnitude of given vector.
b)	Write a program to find mean, standard deviation, and variance of given vector.
4.	Conditional Statements and Functions
a)	Write a program to show use of if-then-else statement and while loop
b)	Write a program to import and export data from .csv file.
5.	Arrays and Strings
a)	Write a program to display data using string.
b)	Write a program to compare two given arrays or array elements.
6.	Operations on Matrix

a) Write a program to find transpose, determinant, concatenation, and inverse of given matrix.

b) Write a program to solve given linear equation.

7. GUI

- a) To introduce basics of GUI
- b) To design GUI for any one of the programs mentioned above.

8. Simulink

- a) To introduce basics of Simulink
- b) Develop a model to differentiate and integrate sine wave using Simulink.

Text Books:

- 1. MATLAB for Beginners-A Gentle Approach, Peter I. Kattan, 2010, ResearchGate publication
- 2. Getting started with MATLAB, RudraPratap, 2010, Oxford university press.

Reference Books:

- 1. A Guide to MATLAB, Brian R. Hunt, Ronald L. Lipsman, Jonathan M. Rosenberg, 3rd Edition, Cambridge University Press.
- 2. Introduction to MATLAB for Engineers, WilliamJ.Palm, 3rd Edition, McGraw-Hill Education.

B. Tech. Sem. II: Electronics & Telecommunication Engineering SUBJECT: - DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS

TEACH	HING S	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Theory:	03		End Semester Examination: 60 Marks	Credits: 03
Practical: 00			Internal Assessment: 40 Marks	
Tutorial	: 01			Credits: 01
				Total Credit: 04
Course	Pre-rec	uisites:		
		Class XII Math	ematics, Linear Algebra and calculus	
Course	Objecti	ves:		
1.		To introduce ordinary differential equations for higher order.		
2.		To introduce pa	rtial differential equations.	
3.		To introduce complex analysis and conformal mapping.		
4.	To teach sequences, series, and series expansion.			
5.		To introduce ordinary differential equations for higher order.		
6.	6. To introduce partial differential equations.		artial differential equations.	
Course	Outcon	nes: After lear	rning this course students will be able to	
1	Solve l	nigher differentia	l equations by different methods	

Solve	Solve partial differential equations by different methods				
Demor	Demonstrate the methods of Complex Analysis technique.				
Impler	nent the Complex Analysis for potential application				
Demoi	nstrate the knowledge of series and sequences.				
Solve	series expansion problems.				
- I	Ordinary linear differential equations	(06 Hours)			
	Ordinary linear differential equations of nth order, solution of homogeneous and non-				
	homogeneous equations. Operator method. Methods of undetermined coefficients and variation				
of parameters, Systems of differential equations. Mass spring system.					
- II	Partial Differential Equations	(06 Hours)			
	Partial differential equations, variable separable method, complementary function and particular				
	integral, initial and boundary value problems (wave equation, 1-D and 2-D heat Equation).				
III	Complex Differentiation and Integration	(06 Hours)			
	gebra of Complex Number (Polar and exponential form, Power and roots, Regions in a complex				
	plan), Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Derivatives of				
	analytic functions, Singularities, Residues, Poles and Zeros of Analytic Functions, The Residue				
	Theorem				
	Solve j Demoi Demoi Solve s - I - II	Solve partial differential equations by different methods Demonstrate the methods of Complex Analysis technique. Implement the Complex Analysis for potential application Demonstrate the knowledge of series and sequences. Solve series expansion problems. Implement the analysis of the problems. Ordinary linear differential equations Ordinary linear differential equations of nth order, solution of homogeneous and nonhomogeneous equations. Operator method. Methods of undetermined coefficients and variation of parameters, Systems of differential equations. Mass spring system. Implementation Partial Differential Equations Partial differential equations, variable separable method, complementary function and particular integral, initial and boundary value problems (wave equation, 1-D and 2-D heat Equation). Implex Differentiation and Integration gebra of Complex Number (Polar and exponential form, Power and roots, Regions in a complex plan), Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Derivatives of analytic functions, Singularities, Residues, Poles and Zeros of Analytic Functions, The Residue Theorem			

UNIT -IV	Conformal mapping	(06 Hours)
	G Geometry of analytic functions: conformal mapping, points linear fractional transformations,	
	conformal mapping for other function. Conformal mappings to potential problems: electrostatic	
	fields, use of conformal mapping: modelling, heat problems, fluid flow, Poisson's Integral	
	formula for potentials, General properties of harmonic functions, uniqueness theorem for the	
	Dirichlet problem.	
UNIT -V	Sequences and Series	(06 Hours)
	Review of sequences, series and convergence tests, Power Series, Power Series Expansions of	
	Analytic Functions, Taylor Series (Taylor's Theorem with Proof), Laurent series (Laurent's	
	Theorem without Proof), Leibnitz's Theorem, Maclaurin's Series	
UNIT -VI	Series Expansion	(06 Hours)
		(00 110013)
	Multiplication, Division, Integration and Differentiation of Power Series, methods for solutions of	
	ordinary differential equations. Legendre equation and Legendre polynomials, Bessel equations and	
	Bessel functions of first and second kind. Orthogonal sets of functions	
	•	
Topics for pro	jets based learning*	
1. Use MATLA	B to formulate and solve types of differential equations - Initial value problems and Delay differential	equations
2. Use MATLA	B to formulate and solve types of differential equations - Boundary value problems and Partial differential	ntial equations
3. Ordinary Dif	ferential Equation (ODE) solvers in MATLAB, solve initial value problems with a variety of properties	8
4. Ordinary Dif	ferential Equations EULER methods	

5. Ordinary Differential Equations Using built-in function

6. Differential Equations in Python

7. Differential Equations with ODE in Python

8. Partial Differential Equations in Python

9. Solving partial differential equations

10.Complex Line Integration

11. Multi dimentional Conformal mapping

12. Sequences & Series using matlab

13.Sequences and Series -circle packing method

14. An End-to-End Project on Time Series Analysis and Forecasting with Python

15. Time Series Analysis in Python

16.Time Series Classification (with Python)

17.Taylor series with Python

18. Program to print binomial expansion series

*Students in a group of 3 to 4 shall complete any one project from the above list

Textbooks/Reference Books

1.'Advanced Engineering Mathematics' by Erwin reyszig

2.'Advanced Engineering Mathematics' by Dennis G. Zill and Warren S. Wright

3. Applied Mathematics (Volumes I and II) by P.N. Wartikar & J.N. Wartikar

4. HigherEngineeringMathematicsbyB.S. Grewal

5.HigherEngineeringMathematicsbyB.V. Ramana

6.AdvancedEngineeringMathematics

	B. Tech. Sem. II: Electronics & Telecommunication Engineering					
	SUBJECT: - Chemistry of Electronic Materials					
TEAC	HING SCHEME	EXAMINATION SCHEME	<u>CREDITS ALLOTTED:</u>			
Theory:	: 03	End Semester Examination: 6	0 Marks Credits: 03			
Practica	al: 02	Internal Assessment: 40 Mar	ks			
Tutoria	1:00	TW: 50 Marks	Credit: 01			
			Total Credit: 04			
Course	Pre-requisites:					
	Basic k	nowledge of chemistry, Electrochemic	al series, Electrode potential, Primary and secondary cells, Capacitor,			
	insulate	or, classification, and properties of pol	ymers.			
Course	Objectives:					
	To develop the interest among the students regarding chemistry and their applications in engineering					
• To develop confidence among students about chemistry, how the knowledge of chemistry is applied			s about chemistry, how the knowledge of chemistry is applied in			
	tec	hnological field.				
	• The	e student should understand the conc	epts of chemistry to lay the groundwork for subsequent studies in the			
	fiel	d such as E&TC Engineering				
Course	Outcomes: Af	ter learning this course students wil	l be able to			
1	1 Demonstrate the knowledge of Electrical Insulating Materials with its applications.					
2	Demonstrate the knowledge about Dielectric Strength and Insulation Breakdown for various engineering applications.					
3	3 Apply the knowledge of crystallography to study of crystal structure					
4	Apply the know	ledge Solid Solutions and Two-Phase	Solids.			
5	Demonstrate the	e concept of the battery with its application	ations			
6	Demonstrate the concepts of spectroscopy and thermogravimetry for various engineering applications.					

		ſ			
UNIT – I	Electronic Materials 1	(06 Hours)			
	Electrical Insulating Materials: Introduction - Requirements. Classification based on Substances:				
	Gaseous, Liquid and Solid Insulating Materials. Preparation, Properties and Applications of				
	Ceramic Products: White Wares and Glass - Transformer Oil. Electrical Resistivity: Factors				
	influencing Electrical Resistivity of Materials - Composition, Properties and Applications of High				
	Resistivity Materials: Manganin - Constantan - Molybdenum Disilcide – Nichrome.				
UNIT – II	Electronic Materials 2	(06 Hours)			
	Dielectric Strength and Insulation Breakdown: Dielectric Strength: Definition, Dielectric				
	Breakdown and Partial Discharges: Gases, Dielectric Breakdown: Liquids, Dielectric				
	Breakdown: Solids, Capacitor Dielectric Materials: Typical Capacitor Constructions, Dielectrics:				
	Comparison. Piezoelectricity, Ferroelectricity, and Pyroelectricity: Piezoelectricity: Quartz				
	Oscillators and Filters, Ferroelectricity, and Pyroelectricity Crystals, Introduction to Compound				
	Semiconductors.				
UNIT - III	Electronic Materials 3				
	The Crystalline State: Types of Crystals, Crystal Directions and Planes, Allotropy and Carbon,	(06 Hours)			
	Crystalline Defects and Their Significance: Point Defects: Vacancies and Impurities, Line				
	Defects: Edge and Screw Dislocations, Planar Defects: Grain Boundaries, Crystal Surfaces and				
	Surface Properties, Stoichiometry, Nonstoichiometric, and Defect Structures, Single- Crystal				
	Czochralski Growth. Glasses and Amorphous Semiconductors: Glasses and Amorphous Solids,				
	Crystalline and amorphous Silicon.				
UNIT -IV	Phase rule and Polymers	(06 Hours)			
	Solid Solutions and Two-Phase Solids: Isomorphous Solid Solutions: Isomorphous Alloys, Phase				
	Diagrams: Cu-Ni and Other Isomorphous Alloys, Binary Eutectic Phase Diagrams and Pb-Sn				
	Solders. Polymers, Preparation, Properties and Applications of SF6, Epoxy Resin, Conduction				
	Mechanism, Preparation of Conductive Polymers, Polyacetylene, Poly (P- Phenlylene),				
	Polyhetrocyclic Systems, Polyaniline, Poly (Phenylene Sulphide), Poly (1,6-Heptadiyne),				

		Applications.			
UNIT	-V	Electrochemistry	(06 Hours)		
		Introduction, Acids and Bases, Concept of pH and pOH and Numerical Electrode Potential,			
		Electrochemical Cell, Concentration Cell, Reference Electrodes, Overvoltage, Fuel Cells,			
		Construction and Working of - Acid and Alkaline Storage Battery, Dry Cell, Coin Cell Batteries,			
		Ni-Cd Batteries, Ni-MH Batteries, Li-Ion Batteries, Li-Po Batteries.			
TINIT	X7T				
UNII	- 1	Instrumental Methods of Analysis	(00 Hours)		
		Introduction, Absorption of Radiation, Instrumentation and Applications of UV-Visible			
		Spectrophotometer and IR Spectrophotometer. Thermal Methods of Analysis IGA, DIA, DSC,			
		Sensors: Oxygen and Glucose Sensor.			
Torm	Work				
<u>1 1 1</u>	To measu	ire the absorbance of the sample at different wavelengths			
1.	Vorificati	ion of Boor Lambort's Law			
2.	2. verification of Beer-Lambert's Law.				
5.	Determin	ation of viscosity Average Molecular weight of Polymer			
4.	Determin	ation of Viscosity of Organic Solvents			
5.	To find the	he tensile strength of polymer.			
6.	To determ	nine the pH value of given solutions using pH meter.			
7.	To determ	nine pH of soil			
8.	To find E	EMF of the cell.			
9.	To calcul	ate the Equilibrium constant.			
10	10. To predict the spontaneity of the cell reaction.				
11.	11. To learn the specific charge/discharge characteristics of a Lithium- ion (Li- ion) battery through experimental testing of a				
	remote triggered Li- ion Battery.				
12	12. To Prepare Phenol formaldehyde/Urea formaldehyde resin.				
13	13. To study set up of Daniel Cell				

Topics for projets based learning* 1. To Prepare and for synthesis of the following polymers, a. Bakelite b. Polystyrene c. Epoxy Resin 2. Synthesis properties and applications of polymer. 3. To Prepare one component system with an example 4. To Prepare two component system with an example 5. How to Make a Battery with Metal, Air, and Saltwater 6. Use a Microbial Fuel Cell to Create Electricity from Waste 7. To Prepare fuel cell 8. To prepare lead acid storage battery. 9. To prepare Oxidic Nanomaterials for High Density Storage in Li-ion Batteries 10 Electrochemical forming is a unique additive manufacturing method which uses electrochemical technologies to manufacture, layer-by-layer, parts of complex geometry. 11. The materials chemistry and electrochemistry of the lithium-air battery 12. Challenges facing all-solid-state batteries 13. The materials chemistry and electrochemistry of lithium and sodium-ion batteries 14 Electroplating- the principles, how different metals can be used and the practical applications. 15. Electroplating, Metal Polishing, Anodizing, Phosphating Metal Finishing and Powder Coating Projects *Students in a group of 3 to 4 shall complete any one project from the above list **Text Books:** 1. Polymer Science and technology (2nd Edition), P. Ghosh, Tata McGRAW Hill, 2008. 2. Polymers: Chemistry & Physics of Modern Materials (2nd edition) J.M.G.Cowie, Blackie Academic & Professional, 1994.

- 3. A Text Book of Engineering Chemistry, Shashi Chawla, Dhanpat Rai & Co, 2004
- 4. Engineering Chemistry (16th Edition) Jain, Jain, Dhanpat Rai Publishing Company, 2013.
- 5. Chemical sensors and Biosensors, Fundamentals and applications, Florinel Gabriel Banica, Wiley.

6. Microelectronics Circuits, Adel S. Sedra& Kenneth C. Smith,7th Edition, 2015, ISBN 978-0-19-933913-6,Oxford University Press

Reference Books:

1. Inorganic Chemistry (4th edition), D. F. Shrives and P. W. Atkins, Oxford University,

Oxford, 2006.

2. Reactions, Rearrangements and Reagents (4th edition), S. N. Sanyal, Bharti Bhawan (P & D), 2003.

3. Applications of Absorption Spectroscopy of Organic Compounds (4th edition), John R. Dyer, Prentice Hall of India Pvt. Ltd., 1978.

B. Tech. Sem. II: Electronics & Telecommunication Engineering						
	SUBJECT: - DIGITAL ELECTRONICS					
TEACI	HING SO	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory:	: 04		End Semester Examination: 60 Marks	Credits: 04		
Practica	ıl: 02		Internal Assessment: 40 Marks			
Tutorial	1: 00		TW& OR: 50 Marks	Credit:01		
				Total Credit: 05		
			·	·		
Course	Pre-req	uisites:				
		Fundamentals	of Number Systems.			
0						
Course Objectives:		11 .1 1 1 1 1				
I. To present the Dig		To present the	Digital fundamentals, Boolean algebra, and its applications in digital systems			
2. To familiarize		To familiarize	e with the design of various combinational digital circuits using logic gates			
3. To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits		ous and asynchronous sequential circuits				
4. To understand the various semiconductor memories and related technology		ed technology				
5.		To introduce t	he electronic circuits involved in the making of	logic gates		
		·				
Course	Outcom	es: After lea	rning this course students will be able to			
1	1 Demonstrate the knowledge of Digital fundamentals and Boolean algebra.					
2	Apply of	lifferent minimi	zation techniques on Boolean expression and d	esign logic diagram		
3	Analyze & design digital combinational circuits such as of multiplexers, demultiplexers, encoder, decoder, and arithmetic circuits					

4	Demon	nonstrate the knowledge of operations of basic types of flip-flops & the design of FSM.			
5	Analyze	yze & design digital Sequential circuits such as Shift Registers and Counters			
6	Classify	the characteristics of different logic families, PLDs, Semiconductor memories and their application	s.		
UNIT –	- I	Introduction to Digital Systems:	(08 Hours)		
		Introduction to Digital electronics Fundamentals			
		Number Systems: Introduction to Number Systems-Decimal, Binary, Octal,			
		Hexadecimal, Conversion of number system, Representation of Negative Numbers,1's			
		complement and 2's complement.			
		Binary Arithmetic: Binary addition, Binary subtraction, Subtraction using 1's			
		complement and 2's complement, Binary multiplication, and division,			
		Digital Codes: BCD code, Excess-3 code, Gray code, Binary to Excess -3 code			
		conversion and vice versa, ASCII code, EBCIDIC code.			
	Logic Gates: Logical Operators, Logic Gates-Basic Gates, Active high and Active low				
	concepts, Universal Gates, and realization of other gates using universal gates, Gate				
		Performance Characteristics and Parameters			
UNIT -	- II	Boolean Algebra:	(08 Hours)		
		Boolean Expressions and Truth Tables, Rules and laws of Boolean algebra, Demorgan's			
		Theorems, Duality Theorem, Simplification of Boolean functions by Boolean laws, Shannon's			
		Theorem.			
		Boolean Function minimization Technique: Introduction: Minterms and sum of minterm			
		form, Maxterm and Product of maxterm form, Reduction technique using Karnaugh maps			
		-2/3/4/variable K-maps, grouping of variables in K-maps, minimize Boolean expression			
		using K-map and obtain K-map from Boolean expression, Quine Mc Cluskey Method			
UNIT -	111	Combinational Logic Design			
		Introduction to Combinational Circuits, Adders: Half-Adder and Full-Adder, Subtractors-	(08 Hours)		
		Half and Full Subtractor; Parallel adders: Ripple Carry and Look-Ahead Carry Adders.			

BCD adder, BCD subtractor, Parity Checker/Generator, Multiplexer, Demultiplexer,	
Encoder, Priority Encoder; Decoder, BCD to Seven segment Display Decoder, ALU, Code	
converters, Magnitude comparators	
UNIT -IV Sequential Logic Design	(08 Hours)
Introduction to Sequential Circuits: 1 Bit Memory Cell, Latches: SR latch, Gated latch, Flip- Flops: Types of Flip Flops -RS, T, D, JK, Triggering of Flip Flops, Master-Salve JK Flip flop, Characteristic table of Flip-flop, excitation table of Flip-flop, Study of timing parameters of flip-flop.	
UNIT -V Shift Registers and Counters:	(08 Hours)
Data transmission in shift resister: SISO, SIPO, PISO, PIPO, Bidirectional shift register, universal shift registers. Counters: synchronous counter and asynchronous counter.Introduction to FSM: Moore and Mealy State machine, state machine as a sequential controller. Design of state machines: state table, state assignment, transition/excitation table, excitation maps and equations, logic realization, Effect of clock skew and clock jitter on synchronous designs (Metastability)	
UNIT -VI Logic Families and Memory Technology:	(08 Hours)
Logic Family : Digital IC specification terminology, Logic families: TTL, CMOS, ECL families, Interfacing of TTL to CMOS & CMOS to TTL.	
Programmable logic devices : Study of PROM, PAL, PLAs. Designing combinational circuits using PLDs.	
Semiconductor memories: Classification and characteristics of memory, different types of RAMs, ROMs and their applications	
	1
List of Practicals to be performed in the laboratory	

	1.	Study of basic gates	using TTL, CMOS: 7	432, 4011, 4050.	, 4070,4071,40106 and Universal Gates.
--	----	----------------------	--------------------	------------------	--

2. K map-based implementation of combinational logic

3. Design and implementation of Half and Full Adder, Half and Full Subtractor

4. Study of four-bit parallel Adder / Subtractor using IC 7

5. Design and implementation of Code Converters (Binary to Gray, Excess 3 to Binary)

6. Design and implementation of Magnitude Comparator

7. Implementation of combinational logic using MUX

8. Study of Decoder and DEMUX

9. Study of 7 segment decoder driver.

10. Study of Flip Flops (SR FF, D FF, JK FF, T FF)

11. Study of Shift Registers

12. Study of Up-Down Counter and Johnson Counter.

13. Study of Static I/O and transfer Characteristic of TTL

Note: The term work shall be the record of minimum eight experiments performed from the above list

Topics for projets based learning*

1.Survey report of basic gates ICs 7432, 4011, 4050, 4070, 4071, 40106

2. Implement combinational logic Circuit of given Boolean Equation.

3. Implement Half Adder and Half Subtractor.

4. Implement Full Adder using two Half Adders

5. Build 4-bit parallel Adder / Subtractor using IC.

6. Build Code Converters: Binary to Gray

7. Build Code Converters: Excess 3 to Binary)

8. Implement Two Bit Magnitude Comparator using IC 7485

9. Implement given combinational logic using MUX

10. Implement 7 segment decoder driver using IC 7447.

11. Build a Decade counter and Up-Down Counter.

12. Build a Shift Registers: SISO and SIPO

13. Implement the Johnson Counter and Ring Counter.

14.Survey Report on Static I/O and transfer Characteristic of TTL and CMOS.

15. Implement given Boolean Function using PLA.

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

- 1. R.P. Jain, -Modern digital electronics, 3rd edition, 12threprint Tata McGraw Hill Publication
- 2. Anand Kumar, -Fundamentals of digital circuits 1st edition, Prentice Hall of India, 2001
- 3. P.Raja, Digital Electronics, Second Edition, Scitech Publication (India) Pvt.Ltd.

Reference Books:

- 1. A.P. Malvino, D.P. Leach 'Digital Principles & Applications'' –Vith Edition-Tata Mc Graw Hill, Publication.
- 2. J.F.Wakerly "Digital Design: Principles and Practices", 3rd edition, 4th reprint, Pearson Education, 2

B. Tech. Sem. II: Electronics & Telecommunication Engineering SUBJECT: - SEMICONDUCTOR DEVICES AND CIRCUITS-I

TEACHI	ING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:				
Theory: 04		End Semester Examination: 60 Marks	Credits: 04				
Practical:	02	Internal Assessment: 40 Marks					
Tutorial:	00	TW & PR: 50 Marks	Credit: 01				
		L	Total Credit: 5				
Course P	re-requisites:						
	Elementary E	ectronics, EDA Tool Practice					
Course C)bjectives:						
1.	To introduce t	he methods of analysis, design, and simulation of diode circuits					
2.	To introduce t	the methods of analysis, design, and simulation of BJT biasing circuits					
3.	To introducen	nethods to analyze and design and simula	te BJT amplifier circuits				
4.	To introduce i	methods to analyze and design and simulate JFET circuits					
5. To introduce r		methods to analyze and design and simulate MOSFET circuits					
6. To introduce		the concept of current mirror and transistorized voltage regulator circuits					
Course Outcomes: After learning this course students will be able to							
1	Analyze and design the diode circuits						
2	2 Analyze and design the BJT biasing circuits						

3	Analyze	yze and design the BJT amplifier circuits						
4	Analyze	ze and design the JFET circuits						
5	Analyze	e and design the MOSFET circuits						
6	Analyze	e and design the current mirror and transistorized voltage regulator circuits						
UNIT –	·I	DIODE CIRCUITS	(08 Hours)					
		Analysis and design of Rectifier circuits (HWR, FWR, Bridge, Dual Complementary), Capacitor input filter, Clippers, Clampers, Voltage Multipliers, Special diodes (Zener diodes, Schottky diodes, Gold-diffused diodes), Switching circuits, Simple shunt regulator using Zener diode (analysis and design)						
UNIT – II		BJT CIRCUITS I	(08 Hours)					
		Need of biasing circuits, Analysis, and design of BJT biasing circuits like fixed bias, collector to base bias, voltage divider bias, split-supply bias, Concept of DC load line, Concept of stability factor, Derivation of stability factor						
UNIT - III		BJT CIRCUITS II	(08 Hours)					
		Concept of AC load line, BJT as two-port networks, BJT Models small signal models (h- parameter, Ebers-Moll, hybrid –pi and T), Analysis of CE, CB, CC Amplifiers (Derivation of Zi, Zo, Av, Ai and Ap), Frequency response of BJTamplifiers,Single stage CE voltage amplifier design, large signal BJT model, BJT as switch, power BJT						
UNIT -	IV	JFET CIRCUITS	(08 Hours)					

	Analysis and design of JFET biasing (Fixed bias, Self-bias, Voltage divider bias), JFET models,						
	Analysis of CS, CD, CG Amplifiers, Frequency response of JFET amplifiers, Single stage CS						
	amplifier design, FET as switch.						
UNIT -V	MOSFET CIRCUITS (8 Hours)	(08 Hours)					
	EMOSFET biasing (Fixed bias, negotiated bias/Voltage divide bias), DC load line, MOSFET						
	models, Analysis of MOSFET amplifiers, Single stage CS amplifier design, Frequency response						
	of MOSFET amplifiers, MOSFET as switch, Power MOSFET						
UNIT -VI	OTHER TRANSISTOR CIRCUITS	(08 Hours)					
	Concept of current mirror, Analysis of Widlar current source (BJT and MOSFET), Wilson						
	current mirror (BJT and MOSFET), Gilbert gain cell, Series pass transistor voltage						
	regulator, Variable output voltage regulator						
List of experim	List of experiments:						
1. Observe ar	1. Observe and measure outputs for rectifier circuits						
L							
2. Observe and measure outputs clipper, clamper, voltage multiplier circuits							
3. Construct	3. Construct BJT biasing circuits (Fixed, Collector to base bias circuit, Voltage divider bias circuit and verify the Q-point.						
4. Measure and plat the frequency menones of single stage CE weltage amplifier							
4. Measure and plot the frequency response of single stage CE voltage amplifier							
5 Construct	5 Construct FET bigging circuits (Fixed solf bigg circuit, Voltage divider bigg circuit and verify the O point						
5. Construct	The blashing encents (i incut, sen-blas encent, voltage divider blas encent and verify the Q-point.						
6. Measure an	nd plot the frequency response of single stage JFET CS voltage amplifier						

- 7. Construct MOSFET biasing circuits (Fixed, Voltage divider bias circuit and verify the Q-point.
- 8. Measure and plot the frequency response of single stage MOSFET CS voltage amplifier
- 9. Construct BJT and MOSFET switch circuits and compare the performance (power dissipation, transient response)
- 10. Measure and plot regulation characteristics of shunt regulator, series pass transistorized voltage regulator

Topics for projets based learning*

- 1.Build a voltage quadrupler circuit
- 2. Build a low current, regulated power supply
- 3. Build a diode, BJT tester
- 4. Latching burglar alarm
- 5. Moisture detector
- 6. Voltage controlled variable gain amplifier
- 7. Wind shield wiper control
- 8. Metal detector
- 9. Car battery charger
- 10. Under-voltage/Over-voltage indicator
- 11. Crystal oscillator
- 12. DC Flasher with adjustable ON/OFF times
- 13. Emergency Light
- 14. Simple intercom
- 15. Water level indicator with alarm
- *Students in a group of 3 to 4 shall complete any one project from the above list

Reference Books:

- 1. Fundamentals of Electronic Devices and Circuits, David A. Bell, 5th Edition,2008, ISBN:0195425235, 9780195425239, Oxford University Press.
- 2. Microelectronics Circuits, Adel S. Sedra& Kenneth C. Smith,7th Edition, 2015, ISBN 978-0-19-933913-6, Oxford University

Press			

B. Tech. Sem. II: Electronics & Telecommunication Engineering								
	SUBJECT: - PYTHON PROGRAMMING							
TEAC	TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED:							
Theory:	: 04	End Semester Examination: 60 Marks	Credits: 04					
Practica	al: 02	Internal Assessment: 40 Marks						
Tutoria	1: 00	TW: 50 Marks	Credits :01					
			Total Credits :5					
Course	Pre-requisites:							
	Basic prog	gramming.						
Course	Objectives:							
	• Th	is course will introduce the concepts of Python l	anguage as software development tool.					
	• To	gain practical experience in Python program	ming including fundamental concepts, OOPs, Exception					
	ha	ndling, Graphics.						
Course	Outcomes: After	learning this course students will be able to						
1	Apply the basic concepts of Python programming.							
2	2 Write basic programs using control statements.							
3	Use exception handling in Python programs.							
4	4 Apply object-oriented programming concepts in Python.							
5	Write Python program for simple applications using existing libraries.							

6 Write	simple graphics programs.				
UNIT – I	Python Basics	(08 Hours)			
	Python Introduction Python Installation Relational operators, Bit-wise operators, Logical				
	operators Python Data Types - Numbers (Integer, Floating Point, Complex Numbers), Strir				
	Lists, Tuples, Dictionaries, List comprehensions, Python Control Statements				
UNIT – II	Python Core	(08 Hours)			
	Python Modules & Functions, Lambda, Scope, Python File Handling, Python Regular				
	Expressions, Sequence Types, Input and output, Recursion, Flow Control, Immutable an				
	Mutable Objects				
UNIT - III	Python Exception Handling	(08 Hours)			
	Meaning of Exception, Exception Hierarchy Diagram, Types of Exception- Checked Exception,				
	Unchecked Exception Exception Handling -TRY, CATCH, FINALLY, Raising an Exception,				
	User Defined Exceptions				
UNIT -IV	OOPS, UML & OOAD	(08 Hours)			
	Object Oriented Programming (OOPs) - Class & Object, Abstraction, Inheritance,				
	Polymorphism, Encapsulation Object Oriented (OO) Modelling Object Oriented Analysis				
	& Design (OOAD)				

UNIT -V	Python Multi-Threading	(08 Hours)				
	Threads in Python [1](a) Kernel Threads [1](b) User Space Threads or User Threads, Advantages					
	of Threading, Thread States: Life Cycle of a Thread, Thread & Threading Modules, Forking &					
	Synchronizing Threads, Networking					
UNIT -VI	Python Packages and Graphics	(08 Hours)				
	Numpy: Introduction, data-types, arrays, arrays manipulation, plotting, testing and debugging,					
	Sharing Data using Sockets, Simple applications of python, Scipy, TKinter					
Term Work: Ai	ny 8 of below given list					
1. Evaluate an	by given expression involving arithmetic operators.					
2. Evaluate an	y given expression involving logical operators.					
3. Develop py	thon functions to produce given patterns such as diamond, pyramid, triangles.					
4. Usage of di	4. Usage of different functions present in "math" module.					
5. Write a function that takes two numbers as input parameters and returns their least common multiple.						
6. Write a function that takes two numbers as input parameters and returns their greatest common divisor.						
7. Write a program that takes a sentence as an input and displays the number of words in the sentence.						
8. Ways to sort list of dictionaries by values in Python – Using lambda function.						
9. Write program using "matplotlib" module.						
10. Write program using "NUMPY" module.						
11. Write prog	ram using "Scipy" module.					

12. Write program using "TKinter" module.

Topics for projets based learning*

1. Create a Tic-tac-toe game (GUI optional)

2. Build a password encryptor with Hashing.

3. Build Product Price Comparison using webscraping.

4. Create a google image downloader

5. Create a Snake & Ladders game (GUI optional)

6. Build a contact book using indexing

7. Build What's the word game

8. Build Rock, Paper & Scissors game

9. mp3 file organizer - rebuild a music library's structure from mp3 tag data, and reorganize them in folders. Use Multithreading concepts

10. Create an FTP server

11. Build a functional calculator (GUI optional)

12. Python Email Automation

13. Create a Currency converter (GUI optional)

14. Face Detection using Cv2

15. Biometric Fingerprint detection

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

1.Sheetal Taneja, Naveen Kumar, Python Programming, A modular approach, Pearson publication

Reference Books:

- 1. Learning Python 5th Edition, Oreilly Publication
- 2. Beginning Python: From Novic to professional, by Magnus Lie Hetland, Third Edition, Appress Publication

3. Learning with Python by Allen Downey, Jeffrey Elkner, Chris Meyers, Dreamtech Publication

B. Tech. Sem. II: Electronics & Telecommunication Engineering								
	SUBJECT: - COMPUTER AIDED DRAFTING							
TEACH	HING SC	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:				
Theory:	00		End Semester Examination: 00	Credits:00				
Practica	ıl: 04		Internal Assessment: 00					
Tutorial	: 00		TW: 50 Marks	Credit: 02				
				Total Credit: 02				
			·	·				
Course	Pre-req	uisites:						
	Mathematics (Class XII)							
		I						
Course	Objectiv	ves:						
1.	To teach the studentsFundamentals of engineering drawing and curves							
2.	To introduce the students Isometric views and projection							
3.	To teach the studentsProjections of points, lines, planes & solids							
4.	4. To introduce the students Use of CAD tools.							
Course Outcomes: After learning this course students will be able to								
1	Apply dimensioning methods and drawing of engineering curves.							
2	2 Draw orthographic projections using I st angle and III rd angle projection Methods*.							
3	Draw Isometric views from given orthographic projections*.							

4	Draw p	projection of Lines, its traces and projections of planes*.							
5	Creater	projection of different solids*.							
6	Develo	evelop lateral surfaces of solids*.							
*Using	CAD too	ols							
UNIT -	– I	I Lines and Dimensioning in Engineering Drawing and Engineering Curves							
		Different types of lines used in drawing practice, Dimensioning-linear, angular, aligned system,							
		unidirectional system, parallel dimensioning, chain dimensioning, location dimension and size							
		dimension.							
	Ellipse by Arcs of Circles method, Concentric circles method. Involutes of a circle, Cycloid								
	Introduction to Auto CAD commands.								
UNIT – II		Orthographic Projection							
		Basicprinciples of orthographic projection (First and Third angle method). Orthographic							
		projection of objects by first angle projection method only.Procedurefor preparing scaled drawing,							
		sectional views, and types of cutting planes and their representation, hatching of sections.							
	(Also using AutoCAD commands)								
UNIT ·	- III	Isometric Projections							
		Isometric view, Isometric scale to draw Isometric projection, Non-Isometriclines, and construction							
		of Isometric view from given orthographic views and to construct Isometric view.							

	(Also using AutoCAD commands)	
UNIT -IV	Projections of Points & Lines	
	Projections of points, projections of lines, lines inclined to one reference plane, Lines inclined to	
	both reference planes. (Lines in First Quadrant Only) Traces of lines. (Also using AutoCAD	
	commands)	
UNIT -V	Projections of Planes	
	Projections of Planes, Angle between two planes, Distance of a point from a given plane,	
	Inclination of the plane with HP, VP.	
	(Also using AutoCAD commands)	
UNIT -VI	Projections of Solids	
	Projection of prism, pyramid, cone, and cylinder by rotation method.	
	(Also using AutoCAD commands)	
List of sheets:		
1. Types of li	nes, Dimensioning practice, free-hand lettering, 1 st and 3 rd angle methods symbol.	
2. Engineerin	ng curves.	
3. Orthograph	hic Projections.	
4. Isometric v	views.	

- 5. Projections of Points and Lines and planes.
- 6. Projection of Solids.
- 7. Enclosure design

Term work:

Term work shall consist of half imperial size or A2 size (594 mm x 420 mm) sheets.

All sheets should complete in drawing hall manually and sheet no 2-7 also completed using AutoCAD with printout onA2 size papers.

Text Books/Reference Books:

- 3. "Elementary Engineering Drawing", N. D. Bhatt, CharotarPublishing house, Anand India,
- 4. "Text Bookon Engineering Drawing", K. L. Narayana&P. Kannaiah, Scitech Publications, Chennai.
- 5. "Fundamentals of Engineering Drawing", Warren J. Luzzader, Prentice Hall of India, New Delhi,
- 6. "Engineering Drawing and Graphics", Venugopal K., New Age International publishers.
- 7. "Engineering Drawing", M. B. Shah and B.C. Rana, 1st Ed, Pearson Education, 2005
- 8. "Engineering Drawing (Geometrical Drawing)", P. S. Gill, 10thEdition, S. K. KatariaandSons, 2005
- 9. "Engineering Drawing", P. J. Shah, C. Jamnadasand Co.,1stEdition,1988

B. Tech. Sem. III: Electronics & Telecommunication Engineering								
	SUBJECT: - ADVANCED MATHEMATICS FOR ELECTRONICS							
TEACHING SCHEME:			EXAMINATION SCHEME:	CREDITS ALLOTTED:				
Theory:	: 03		End Semester Examination: 60 Marks	Credits: 03				
Practica	ıl: 00		Internal Assessment: 40 Marks					
Tutorial	l: 01			Credit:01				
				Total Credits: 04				
Course	Pre-ree	quisites:						
		Class XII Math	ematics, Linear Algebra and calculus, Differential equation, and complex analysis					
Course	Object	ives:						
1.		To introduce th	ne concept of Fourier series.					
2. To introduce T		To introduce T	Transforms like Fourier Transform, Laplace Transform and Z Transform.					
3. To teach vector		To teach vector	analysis.					
4. To introduce optimization and graph theory.								
5. To teach probab		To teach proba	bility and statistics.					
Course	Course Outcomes: After learning this course students will be able to							
1	Apply	y Fourier series for solving engineering problems.						
2	Solve	numerical problems involving Fourier Transform.						

3	Demor	nstrate the knowledge of Laplace Transform and Z Transforms.		
4	Apply the concept of optimization and graph theory.			
5	Applyv	yvector analysis for engineering problems.		
6	Solve 1	olve numerical problems based on probability and statistics.		
UNIT –	·I	Fourier Series	(06 Hours)	
		Definition, Euler's formulae, Conditions for a Fourier expansion, Functions having points of discontinuity, change of interval, expansions of odd and even periodic functions, Half range series. application to difference equations and Markov chains, Fourier series and KL expansion, Fourier series with an emphasis on the application of solving engineering problems, Develop Fourier series expansion of a function over the given interval.		
UNIT –	· II	Fourier Transform	(06 Hours)	
		PaFourier transforms, Fourier transform of random process, Fourier sine and cosine transforms, Inverse Fourier, Sine and Cosine Transforms, complex form of Fourier integral, Finite Fourier sine and cosine transforms. Properties of Fourier transform.		
UNIT -	III	Laplace Transform & Z Transform	(06 Hours)	
		Laplace Transform:Definition, transforms of elementary functions, properties of Laplace transforms, transforms of derivatives, Properties of Laplace transforms, transforms of integral,		

	periodic functions, Inverse Laplace transforms, Inverse Laplace transforms by using partial	
	fractions, Properties of LT.	
	Z Transform: Definition properties of z transform Z Transform of basic sequences. Z transform of	
	2 Transform. Definition, properties of 2 transform, 2 Transform of basic sequences, 2 transform of	
	some standard discrete function inverse Z transform	
UNIT -IV	Optimization and graphs	(06 Hours)
	Basics of optimization, Unconstrained optimization: method of steepest descent, linear	
	programming, simplex method, and difficulties.	
	G Graphs and digraphs, shortest path problems, complexities, Bellman's principle, Dijkstra's	
	Algorithm, shortest spanning trees: greedy algorithm, Prim's algorithm, flows in networks,	
	maximum flow: Ford-Fulkerson algorithm	
UNIT -V	Vector Analysis	(06 Hours)
	Coordinate system, inter-conversion of coordinate systems, Vectors in plane and space, vector	
	operations, gradient, divergence and curl, Gauss's, Green's and Stokes' theorems.	
UNIT -VI	Probability and Statistics	(06 Hours)
	Mean, median, mode, standard deviation, combinatorial probability, probability distributions,	
	binomial distribution, Poisson distribution, exponential distribution, normal distribution, joint and	
	conditional probability relation of joint and conditional probability higher order stats	
	conditional probability, relation of joint and conditional probability, higher order stats	
		1

- 1. Energy Flow in an Ecosystem: Graphical model
- 2. Plane Geometry and Vectors
- 3. Bipartite graph
- 4. Trellis (graph)
- 5. Seven Bridges of Königsberg
- 6. Three-cottage problem
- 7. Shortest path problem

8. A system of electric charges has a charge density $\rho(x,y,z)$ and produces an electrostatic field E(x,y,z) at points (x,y,z) in space. Gauss' Law states that

$\iint \Sigma E {\cdot} d\sigma = 4\pi \iiint S \rho dV$

for any closed surface Σ which encloses the charges, with S being the solid region enclosed by Σ . Show that $\nabla \cdot E = 4\pi\rho$. This is one of Maxwell's Equations

- 9. Show that the gradient of a real-valued function $F(\rho, \theta, \varphi)F(\rho, \theta, \varphi)$ in spherical coordinates is:
- 10. Applications of Vector Fields: in Mechanics
- 11. Applications of Vector Fields: Electric and Magnetic fields
- 12. Applications of Vector Fields: Fluids motions
- 13. Applications of Vector Fields: Heat transfer
- 14. Routing problems (e.g. Hamiltonian paths, travelling salesman problem)
- 15. Graph colorings (4-color theorem, chromatic polynomial)

*Students in a group of 3 to 4 shall complete any one project from the above list

Textbooks/Reference Books

1.'Advanced Engineering Mathematics' by Erwin reyszig

2.'Advanced Engineering Mathematics' by Dennis G. Zill and Warren S. Wright

3. Applied Mathematics (Volumes I and II) by P.N. Wartikar & J.N. Wartikar

4. HigherEngineeringMathematicsbyB.S. Grewal

5.HigherEngineeringMathematicsbyB.V. Ramana

6.AdvancedEngineeringMathematics
B. Tech. Sem. III: Electronics & Telecommunication Engineering				
SUBJECT: - SEMICONDUCTOR DEVICES AND CIRCUITS II				
TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory: 04	End Semester Examination: 60 Marks	Credits: 04		
Practical: 02	Internal Assessment: 40 Marks			
Tutorial: 00	TW &PR: 50 Marks	Credit: 01		
		Total Credit: 5		
Course Pre-requisites:				
Network theo elements and FET, MOSFE	ry-Current divider rule, Voltage divider ru their response (initial final conditions), Sem T, Biasing methods, Single stage amplifier-	le, KVL, KCL, Network theorems, h-parameters, passive iconductor theory, semiconductor devices like diodes, BJT, design and analysis		
Course Objectives:				
The objective	e of this course is to cover performance ev	aluation of various amplifiers by		
Introduce multis	• Introducing a concept of the multistage amplifiers, parameter evaluation and related design aspects of multistage amplifiers with the help of derivations.			
• Teachi their a	ing a concept of the feedback in the amplif dvantages and disadvantages.	iers, feedback topologies with the help of derivations and		
• Gaugi	ng the efficiencies of various types of power	amplifiers with the help of derivations.		
• Teach	ing a concept and design of the RC and LC of	oscillators with the help of derivations.		
• Introd	ucing a concept and types of the differential	amplifiers, current mirrors.		
• Introd	ucing a concept and types of the tuning amp	lifiers.		

Course	Outcom	es: After learning this course students will be able to			
1	Analyze and designdiscrete multistage amplifier.				
2	Analyze	Analyze and design negative feedback amplifier.			
3	Classify	and analyze discrete power amplifiers.			
4	Analyze	e and design discrete oscillator circuits.			
5	Analyze	e various types of the differential amplifiers.			
6	Analyze	e the effect of tuning in the amplifiers, and the applications where the tuning amplifiers are useful.			
UNIT -	·I	Multistage Amplifiers	(08 Hours)		
		Need of the Multistage amplifiers, Types of Multistage Amplifiers-Cascade and Cascade,			
		Cascade-Coupling methods, Frequency response, Parameter evaluation - Ri, Ro, Av, Ai &			
Bandwidth for general multistage amplifier, Choice of the transistor configuration in case		Bandwidth for general multistage amplifier, Choice of the transistor configuration in cascade			
		amplifier, Analysis & design of direct coupled, RC coupled (Low frequency, high frequency, and			
		medium frequency analysis), transformer coupled (Low frequency, high frequency and medium			
	frequency analysis) amplifier. Darlington Amplifier, Design of Cascade amplifier				
UNIT -	· II	Negative feedback Amplifiers	(08 Hours)		
		Types of basic Amplifiers, Concept and types of feedback, Transfer gain with feedback, Negative			
	feedback topologies with their block Schematics, Effect of negative feedback on Input				
		impedance; Output impedance; Gain and Bandwidth with derivation, Analysis of one circuit for			
		each feedback topology for input impedance, output impedance, gain and bandwidth.			

UNIT - III	Power Amplifiers	(08 Hours)
	Need of Power amplifiers, classification; applications; advantages of power amplifiers - Class A,	
	Class B, Class C, class D and Class AB. Operation of - Class A with resistive load; Transformer	
	coupled class A Amplifier; Class B Push – pull; Class AB Complementary symmetry and Quasi	
	- complementary. Efficiency analysis for Class A transformer coupled amplifier, Class B push -	
	pull amplifier. Comparison of efficiencies of other configurations. Distortion in amplifiers;	
	concept of Total Harmonic Distortion (THD).	
UNIT -IV	Oscillators	(08 Hours)
	Concept of Positive feedback, Condition, and principle of oscillations (Barkhausen criterion),	
	Classification of oscillators, Design analysis of RC and LC oscillators, RC oscillators: Phase	
	shift, Wien bridge Oscillators; LC Oscillators: Hartley, Colpitt's and Clap; Piezo-electric effect	
	in crystals and Crystal Oscillator.	
UNIT -V	Differential Amplifiers	(08 Hours)
	Limitations of CE amplifier, Split supply biasing, Differential amplifier configurations, Dual	
	Input, balanced output differential amplifier, Dual input, unbalanced output differential amplifier,	
	Single input, balanced output differential amplifier, Single input, unbalanced output differential	
	amplifier, FET differential amplifiers, Constant current bias, Current mirrors (revision),	
	Differential mode gains, common mode gain, CMRR calculation, Derivation for output voltage,	
	input and output impedances	

UNIT -VI	Tuned Amplifiers	(08 Hours)
	Introduction, Q-factor, small signal tuned amplifiers, Effect of cascading Single tuned amplifiers	
	on Bandwidth, Effect of cascading Double tuned amplifiers on Bandwidth, Stagger tuned	
	Amplifiers, Comparison of Tuned amplifiers, large signal tuned amplifiers, Stability of Tuned	
	amplifiers, Neutralization	
Term Work: An	ny 8 of below given list	
1. To find the	gain and bandwidth of a 2-stage CE RC coupled amplifier.	
2. To find the	gain and bandwidth of a 2-stage transformer coupled amplifier.	
3. To find the	gain of a direct coupled amplifier.	
4. To find the	gain and bandwidth of a voltage series negative feedback amplifier.	
5. To find the	gain and bandwidth of a voltage shunt negative feedback amplifier.	
6. To find the	gain and bandwidth of a currentseries negative feedback amplifier.	
7. To find the	gain and bandwidth of a current shunt negative feedback amplifier.	
8. To study th	e response of a Class A direct coupled/ transformer coupled amplifier.	
9. To study th	e response of a Class B power amplifier.	
10. To find the	oscillations frequency of the RC amplifiers-RC phase shift/ Wien bridge oscillator.	
11. To find the	oscillations frequency of LC amplifiers-Colpitt's Oscillator/Hartley Oscillator.	
12. To plot free	juency response of tuned amplifiers.	
Topics for proje	ets based learning*	
1.Prepare survey	report on types of multistage amplifiers.	

2. Build and analyze the 2-stage RC coupled amplifier.

3. Build and analyze the 2-stage transformer coupled amplifier.

4. Build and analyze the 2-stage direct coupled amplifier.

5. Prepare survey report on types of negative feedback amplifiers.

6. Build and analyze 2-stage voltage series negative feedback amplifier.

7. Build and analyze single stage current series negative feedback amplifier.

8. Build and analyze single stage voltage shunt negative feedback amplifier.

9. Build and analyze 2-stage current shunt negative feedback amplifier.

10. Prepare survey report on types of power amplifiers.

11. Implement and analyze class A direct coupled power amplifier.

12. Implement and analyze class B push pull power amplifiers.

13. Prepare survey report on types of oscillators.

14. Implement RC phase shift oscillator and verify it for oscillations frequency.

15. Prepare survey report on types of differential amplifier.

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

1. S. Salivahanan and N Suresh Kumar, 'Electronic devices and circuits', Mc Graw Hill Education India Private Limited, Third

Edition.

Reference Books:

1. Ramakant A.Gayakwad "Op-amps and Linear Integrated Circuit Technology"Fourth edition

2. Adel S. Sedra, Kenneth C. Smith "Microelectronic Circuits" Oxford series in Electrical and computer engineering

B. Tech. Sem. III: Electronics & Telecommunication Engineering SUBJECT: - SIGNALS AND LINEAR SYSTEMS

TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:
Theory: 04		End Semester Examination: 60 Marks	Credits: 04
Practical: 0	02	Internal Assessment: 40 Marks	
Tutorial: 00	0	TW: 25 Marks	Credit: 01
			Total Credit: 05
Course Pr	e-requisites:		
	Lin	near algebra, calculus, MATLAB fundamentals, Diffe	rential equations, and complex analysis
Course Ob	ojectives:		
1	. То	teach the basic concepts of signals.	
2	2 То	introduce the basic concepts of systems analysis	
3	3 То	introduce the tools in the time and frequency domai	n.
4	4 To	provide knowledge of correlation function and samp	pling.
Course Ou	itcomes: After	r learning this course students will be able to	
1 Characterize and anal		nd analyze the properties of signals.	
2 Classify the systems a		stems and analyze in time domain using convolution	
3	Apply Fourier t	transform for analysis of LTI systems.	

4	Apply Laplace transform for analysis of LTI systems.			
5	Apply discrete transforms for analysis of LTI systems.			
6	Evaluate the effects of sampling on signal and describe the auto correlation and cross correlation between signals.			
UNIT – I Introduction to signals		(08 Hours)		
		Definition of signals, classification of signals: continuous time signals & discrete time signals, even & odd signals, periodic & non-periodic, deterministic & non-deterministic, energy & power, elementary signals: unit impulse, unit step, unit ramp, exponential & sinusoidal, basic operations on signals.		
UNIT – II		Classification of systems	(08 Hours)	
		Definition, Classification of System, System Interconnections, state space analysis, Linear & non -linear, Time-Invariant & Time variant, causal & non-causal, static & dynamic, stable & unstable systems, stability & impulse response of systems to standard signals.		
UNIT - III	[Continuous Time System Analysis	(08 Hours)	
		Response of LTI Systems to exponential signals, periodic signals. Derivation Fourier series, Discrete time Fourier series and properties, Fourier Transforms, Duality and Parseval's theorem, Fourier analysis examples: Output of LTI Systems Described by Differential, convolution with FT, unit step response of RC circuit, filtering, FT of Gaussian Pulse, Example of the brain waves.		
			(00 H	
UNIT-IV		Laplace Transform and Application	(08 Hours)	
		Review of Laplace transform and properties, Concept of ROC and properties of ROC, pole		

	zero concepts. Transfer function and condition of stability, Application of Laplace transforms to the LTI system analysis, Convolution with LT, Inversion using duality, Laplace Transform of electrical Circuit, example of control system, calculation of harmonic		
	vibration of the beam, Mathematical models of physical system- Electrical & Mechanical System		
UNIT -V	Discrete Transforms and Applications	(08 Hours)	
	Z-Transform: The Region of Convergence for the Z-Transform, Application of Z-Transform to the LTI system analysis.		
	Discrete time Fourier transform, Properties of DTFT, Fast Fourier transform algorithm, Use of FFT in Windows Media Player.		
	Convolution and Spectral Dansity	(09 Houng)	
	Correlation and Spectral Density		
	Definition of Correlation and Spectral Density, correlogram, analogy between correlation, covariance and convolution, conceptual basis, auto-correlation, cross correlation, energy/power spectral density, properties of correlation and spectral density, inter relation between correlation and spectral density, Sampling theorem & its proof, aliasing, reconstruction of sampled signals, interpolation.		
Term Work: Any 8 of	f below given list		
1. Perform the ope	erations on signals		
2. Perform the con	2. Perform the convolution of signals using formula using MATLAB.		
5. Analyze the synthesis of signals using Fourier Series.			
5. Find the Laplac	ce Transform using MATLAB.		

- 6. Find the Z-Transform using MATLAB.
- 7. Find the autocorrelation of sine sequence x[n] with frequency 50Hz and sampling frequency 200Hz, using MATLAB.
- 8. Find the cross correlation for different signals.
- 9. Find the Inverse Fourier Transform using MATLAB.
- 10. Find the Inverse Laplace transform using MATLAB.
- 11. Find the inverse Z Transform using MATLAB.
- 12. Find the circular convolution using MATLAB.

Topics for projets based learning*

- 1. Signals In Natural Domain
- 2. Signal operations for navigation/obstacle detection
- 3. Speech production
- 4. Speech hearing
- 5. LTI Systems Eigenfunctions, System Described by differential Equation, Homogenous and Particular Solution
- 6. LTI Systems-Convolution applications,
- 7. Periodic Convolution applications,
- 8. BIBO Stability applications
- 9. z-Transform Applications- Impulse Response of LTI System Described by Difference Equation
- 10. Complex Exponential Fourier Series and Trigonometric Fourier Series of Periodic Triangular Wave, Periodic Convolution
- 11. Real life example on DTFT Sampling
- 12. Group/ Phase Delay for LTI systems
- 13. Implement DFT in Matrix form
- 14. Implement IDFT in Matrix form
- 15. FAST FOURIER TRANSFORM ANALYZER
- *Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

- 1. Roberts M. J., Signals & Systems, TMH.
- 2. Oppenheim, Wilsely&Nawab, Signals & Systems, MGH.

Reference Books:

1. B.P.Lathi, Signal Processing & Linear Systems, Berkeley Cambridge, 1998 Edition.

B. Tech. Sem. III: Electronics & Telecommunication Engineering				
SUBJECT: - NETWORK ANALYSIS AND SYNTHESIS				
TEACHING SCHE	ME: EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory: 04	End Semester Examination: 60 Mar	ks Credits: 04		
Practical: 02	Internal Assessment: 40 Marks			
Tutorial: 00	TW & PR: 50 Marks	Credit: 01		
		Total Credits: 5		
Course Pre-requisit	es:			
Kno Equ	owledge of KCL and KVL Laws from 'Electric actions and complex numbers from 'Differential	al Technology',Linear Differential Equations, Systems of Linear Equations and Complex Analysis'		
Course Objectives:				
The	The objective of this course is to cover various methods to find the network parameters as listed below:			
	• To teach how to find network parameters (voltages, currents, power) in a given passive circuit by the use or methods- MeshAnalysis, Node Analysis and Network Theorems.			
	• To teach how to find voltages and currents in a given circuit by formulating the network equilibric equations by the use of graph theory.			
	• To teach how to find the transient response of the series RLC circuits by the use of homogeneous and no homogeneous equations.			
	• To introduce the resonance phenomenon, curves and related parameters in a given series and a resonant circuit with the help of derivations.			
• To introduce the two port network parameters, their interrelationships, and interconnections with the he derivations.				

		• To teach how to design a constant K prototype low pass, high pass, band pass and a band	stop passive filters	
	for different bandwidths by using filter topologies.			
Course	Outcom	es: After learning this course students will be able to		
1	Analyze	e passive circuits using Mesh Analysis, Node Analysis and Network Theorems.		
2	Apply g	graph theory by formulating the network equilibrium equations for circuit analysis.		
3	Perform	n Transient Analysis of the Series Reactive Circuits		
4	Sketch	the resonance curves for a given series and parallel resonant circuits.		
5	Comput	te two port parameters for a given network		
6	Design	constant-k prototype low pass, high pass, band pass and band stop passive filters.		
UNIT -	- I	DC circuit Analysis and Network Theorems	(08 Hours)	
		KCL, KVL, Source Transformation, Source Shifting, Mesh Analysis, Node Analysis, Super		
		Mesh, Super Node, Network Theorems- Superposition Theorem, Thevenin's Theorem, Norton's		
		Theorem, Maximum Power Transfer Theorem, Reciprocity Theorem		
UNIT -	- II	Formulation of network equilibrium equations using Graph Theory	(08 Hours)	
		Network Graph, tree, co-tree & loop, Incidence Matrix, Tie-set matrix, Cut-set matrix,		
		Formulation of the equilibrium equations in the matrix form, Solution of the resistive and non-		
		resistive networks, Principle of Duality		
UNIT -	III	Transient Analysis of the Series Reactive Circuits	(08 Hours)	

	Initial Conditions in the networks, A procedure for evaluating initial conditions, the step response	
	in RC, RL, RLC circuits using classical method and using Laplace Transform for driven and	
	undriven circuits, Time specifications of RLC circuits, Concept of the natural frequency and	
	damping frequency, Zeta.	
UNIT -IV	Resonance in Series and Parallel RLC Circuits	(08 Hours)
	Resonant condition, Quality factor, Resonant frequency, impedance at resonance, voltage and	
	current variation with frequency, bandwidth, selectivity, magnification factor for series and	
	parallel resonant circuits. Effect of Generator resistance on bandwidth and Selectivity,	
	Comparison of series and parallel resonant circuits, Applications of resonant circuits	
UNIT -V	Two Port Networks	(08 Hours)
UNIT -V	Two Port NetworksConcept of Two port network, Z, Y, H, ABCD and other parameters, Relationships between two-	(08 Hours)
UNIT -V	Two Port NetworksConcept of Two port network, Z, Y, H, ABCD and other parameters, Relationships between two-port network parameters, Reciprocity and Symmetry conditions, Interconnections of two-ports,	(08 Hours)
UNIT -V	Two Port Networks Concept of Two port network, Z, Y, H, ABCD and other parameters, Relationships between two-port network parameters, Reciprocity and Symmetry conditions, Interconnections of two-ports, Analysis of some circuits using two port network parameters theory.	(08 Hours)
UNIT -V	Two Port Networks Concept of Two port network, Z, Y, H, ABCD and other parameters, Relationships between two-port network parameters, Reciprocity and Symmetry conditions, Interconnections of two-ports, Analysis of some circuits using two port network parameters theory.	(08 Hours)
UNIT -V UNIT -VI	Two Port Networks Concept of Two port network, Z, Y, H, ABCD and other parameters, Relationships between two-port network parameters, Reciprocity and Symmetry conditions, Interconnections of two-ports, Analysis of some circuits using two port network parameters theory. Passive Filter Analysis	(08 Hours) (08 Hours)
UNIT -V UNIT -VI	Two Port Networks Concept of Two port network, Z, Y, H, ABCD and other parameters, Relationships between two-port network parameters, Reciprocity and Symmetry conditions, Interconnections of two-ports, Analysis of some circuits using two port network parameters theory. Passive Filter Analysis Filter Fundamentals, Electrical Properties-Image impedance, Characteristic impedance,	(08 Hours) (08 Hours)
UNIT -V UNIT -VI	Two Port Networks Concept of Two port network, Z, Y, H, ABCD and other parameters, Relationships between two-port network parameters, Reciprocity and Symmetry conditions, Interconnections of two-ports, Analysis of some circuits using two port network parameters theory. Passive Filter Analysis Filter Fundamentals, Electrical Properties-Image impedance, Characteristic impedance, Propagation constant, Constant K prototype for LPF, HPF, BPF and BSF, m-derived LPF, HPF,	(08 Hours) (08 Hours)
UNIT -V UNIT -VI	Two Port Networks Concept of Two port network, Z, Y, H, ABCD and other parameters, Relationships between two-port network parameters, Reciprocity and Symmetry conditions, Interconnections of two-ports, Analysis of some circuits using two port network parameters theory. Passive Filter Analysis Filter Fundamentals, Electrical Properties-Image impedance, Characteristic impedance, Propagation constant, Constant K prototype for LPF, HPF, BPF and BSF, m-derived LPF, HPF, Terminating half sections, Composite filters, Applications of passive filters.	(08 Hours) (08 Hours)

Term Work: Any 8 of below given list

- 1. To verify Thevenin's and Norton's Theorem for a given circuit.
- 2. To verify Superposition and Reciprocity Theorem for a given circuit.
- 3. To find the resonant frequency of a series RLC circuit.
- 4. To find the resonant frequency of a parallel RLC circuit.
- 5. To find the Z parameters of a given two port network.
- 6. To find the Y parameters of a given two port network.
- 7. To find the H parameters of a given two port network.
- 8. To find the ABCD parameters of a given two port network.
- 9. To find the cut-off frequency and to plot the frequency response of a constant-k LPF.
- 10. To find the cut-off frequency and to plot the response of a constant-k HPF.
- 11. To find the cut-off frequencies and to plot the frequency response of a constant-k BPF.
- 12. To find the cut-off frequencies and to plot the frequency response of a constant-k BSF.

Topics for projets based learning*

1.Build and analyze resistive circuit for current usage.

2. Build and analyze resistive circuit for voltage usage.

3. Build and analyze resistive circuit for power usage.

4. Implement the series RL circuit and verify the initial and final conditions of it.

5. Implement the series RC circuit and verify the initial and final conditions of it.

6. Build and verify series resonance circuit.

7. Build and verify parallel resonance circuit.

8. Verify Z parameters for unknown circuit.

9. Verify Y parameters for unknown circuit.

10. Verify H parameters for unknown circuit.

11. Verify ABCD parameters for unknown circuit.

12. Design and implement prototype Low pass filter and verify its bandwidth.

13. Design and implement prototype High pass filter and verify its bandwidth.

14. Design and implement prototype Band pass filter and verify its bandwidth.

15. Design and implement prototype Band stop filter and verify its bandwidth.

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

1. D. Roy Choudhury, 'Network and Systems', New Age International Publishers, Second Edition.

Reference Books:

- 1. Franklin F. Kuo, 'Network Analysis and Synthesis', John Wiley & Sons (Second Edition)
- 2. M. E. Van Valkenburg, 'Network Analysis', PHI (3rd Edition)

3. John D. Ryder, 'Networks, Lines and Fields', PHI Learning Pvt. Ltd., Second Edition

Bharati Vidyapeeth

(Deemed to be University)

College of Engineering, Pune

B. Tech. Sem. III: Electronics & Telecommunication Engineering				
SUBJECT: - DATABASE MANAGEMENT SYSTEMS				
TEACH	TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED:			
Theory:	: 03		End Semester Examination: 60 Marks	Credits: 03
Practica	ıl: 02		Internal Assessment: 40 Marks	
Tutorial	l: 00		TW: 25 Marks	Credit: 01
				Total Credits: 04
Course	Pre-req	uisites:		
	Python Programming			
Course	Objectiv	ves:		
1	1	To provide a str	rong formal foundation in database concepts, techn	ology, and practice
4	2	To give system	atic database design approaches covering conceptu	al design, logical design, and an overview of physical design
	3	To have good u	inderstanding of different type of databases.	
2	4	To learn a powe	erful, flexible, and scalable general-purpose databa	se to handle big data
Course Outcomes: After learning this course students will be able to				
1	1 Design E-R Model for given requirements and convert the same into database tables.			
2	2 Apply BCNF Algorithm for Decomposition			

3	Use SQL for query processing.		
4	Use algorithms to solve scheduling conflict		
5	Apply Concurrency algorithm in distributed database		
6	Use NO	SQL in database creation.	
	I		
UNIT –	- I	Introduction to Databases	(06 Hours)
		Introduction to Database Management Systems, Purpose of Database Systems, Database-System Applications, View of Data, Database Languages, Database System Structure, Data Models, Database Design and ER Model: Entity, Attributes, Relationships, Constraints, Keys, Design Process, Entity Relationship Model, ER Diagram, Design Issues, Extended E-R Features, converting E-R & EER diagram into tables, Introduction to normalization.	
UNIT –	- II	Relational Database Design	(06 Hours)
		Relational Model: Basic concepts, Attributes and Domains, CODD's Rules, Relational Integrity: Domain, Referential Integrities, Enterprise Constraints, Database Design: Features of Good Relational Designs, Normalization, Atomic Domains and First Normal Form, Decomposition using Functional Dependencies, Algorithms for Decomposition, 2NF, 3NF, BCNF, Modeling Temporal Data	
UNIT -	III	SQL AND PL/SQL	
		SQL: Characteristics and advantages, SQL Data Types and Literals, DDL, DML, DCL, TCL, SQL Operators, Tables: Creating, Modifying, Deleting, Views: Creating, Dropping, Updating using Views, Indexes, SQL DML Queries: SELECT Query and clauses, Set Operations, Predicates and Joins, Set membership, Tuple Variables, Set comparison, Ordering of Tuples, Aggregate Functions, Nested Queries, Database Modification using SQL Insert, Update and Delete Queries. PL/SQL: concept of Stored Procedures & Functions, Cursors, Triggers, Assertions, roles and privileges, Embedded SQL, Dynamic SQL.	(06 Hours)

UNIT -IV	Database Transactions and Query Processing	(06 Hours)	
	Basic concept of a Transaction, Transaction Management, Properties of Transactions, Concept of Schedule, Serial Schedule, Serializability: Conflict and View, Cascaded Aborts, Recoverable and Non-recoverable Schedules, Concurrency Control: Need, Locking Methods, Deadlocks, Timestamping Methods, Recovery methods: Shadow-Paging and Log-Based Recovery, Checkpoints, Query Processing, Query Optimization, Performance Tuning		
UNIT -V	Parallel and Distributed Databases	(06 Hours)	
	Introduction to Database Architectures: Multi-user DBMS Architectures, Case study- Oracle Architecture. Parallel Databases: Speedup and Scale up, Architectures of Parallel Databases. Distributed Databases: Architecture of Distributed Databases, Distributed Database Design, Distributed Data Storage, Distributed Transaction: Basics, Failure modes, Commit Protocols, Concurrency Control in Distributed Database. Cloud database examples.		
UNIT -VI	NoSQL Database	(06 Hours)	
	Introduction to NoSQL Database, Types, and examples of NoSQL Database- Key value store, document store, graph, Performance, Structured verses unstructured data, Distributed Database Model, CAP theorem and BASE Properties, Comparative study of SQL and NoSQL, NoSQL Data Models, Case Study-unstructured data from social media. Introduction to Big Data, HADOOP: HDFS, MapReduce. JSON		
List of Experim	ients:		
1. Write a que	ery to display all the columns from salesman table. First create a Salesman table.		
2. Design and	d Develop SQL DDL statements which demonstrate the use of SQL objects such as Table, View, Index, Sequ	ence, Synonym	
3. Design at least 10 SQL queries for suitable database application using SQL DML statements: Insert, Select, Update, Delete with operators, functions, and set operator.			

4. Design at least 10 SQL queries for suitable database application using SQL DML statements: all types of Join, Sub-Query and View.

5. Unnamed PL/SQL code block: Use of Control structure and Exception handling is mandatory.

Write a PL/SQL block of code for the following requirements: -

1. Schema:

1.Borrower(Rollin, Name, Date of Issue, NameofBook, Status)

2. Fine(Roll.no,Date,Amt)

- Accept roll.no & name of book from user.
- Check the number of days (from date of issue), if days are between 15 to 30 then fine amount will be Rs 5per day.
- If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 perday.
- After submitting the book, status will change from I to R.
- If condition of fine is true, then details will be stored into fine table.

Frame the problem statement for writing PL/SQL block in line with above statement.

- 6. Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor) Write a PL/SQL block of code using parameterized Cursor, that will merge the data available in the newly created table Rollcall with the data available in the table Rollcall. If the data in the first table already exist in the second table, then that data should be skipped. Frame the separate problem statement for writing PL/SQL block to implement all types of Cursors in line with above statement. The problem statement should clearly state the requirements.
- 7. PL/SQL Stored Procedure and Stored Function. Write a Stored Procedure namely proc_Grade for the categorization of student. If marks scored by students in examination is <=1500 and marks>=990 then student will be placed in distinction category if marks scored are between 989 and900 category is first class, if marks 899 and 825 category is Higher Second Class Write a PL/SQL block for using procedure created with above requirement. Stud_Marks(name, total_marks) Result (Roll,Name, Class) Frame the separate problem statement for writing PL/SQL Stored Procedure and function, inline with above statement. The problem statement should clearly state the requirements
- 8. PL/SQL Stored Procedure and Stored Function. Write a Stored Procedure namely proc_Grade for the categorization of student. If marks scored by students in examination is <=1500 and marks>=990 then student will be placed in distinction category if marks scored are between 989 and900 category is first class, if marks 899 and 825 category is Higher Second Class Write a PL/SQL block for using procedure created with above requirement. Stud Marks (name, total marks) Result (Roll, Name, Class) Frame the separate problem

statement for writing PL/SQL Stored Procedure and function, in line with above statement. The problem statement should clearly state the requirements

- 9. Write a program to implement Mogo DB database connectivity with python Implement Database navigation operations (add, delete, edit etc.) using ODBC/JDBC.
- 10. Implement MYSQL/Oracle database connectivity with python Implement Database navigation operations (add, delete, edit,) using ODBC/JDBC
- 11. Mini Project:

Topics for projets based learning*

1.Library Management System

An online library management system offers a user-friendly way of issuing books and viewing different books and titles available under a category. This type of Management Information System (MIS) can be easily developed. And SQL queries enable quick retrieval of the required information.

2. Centralized College Database

A college has academic departments, such as the Department of English, Department of Mathematics, Department of History, and so on. And each department offers a variety of courses. Now, an instructor can teach more than one course. Let's say a professor takes a class on Statistics and on Calculus.

3. Student Database Management

Similarly, you can do a student record-keeping project. The database would contain general student information (such as name, address, contact information, admission year, courses, etc.), attendance file, marks or result file, fee file, scholarship file, etc. An automated student database streamlines the university administration process to a considerable degree.

4. Online Retail Application Database

As e-commerce experiences remarkable growth around the world, online retail application databases are among the most popular SQL project ideas.

5. Inventory Control Management

Inventory control is the process of ensuring that a business maintains an adequate stock of materials and products to meet customer

demands without delay

6. Hospital Management System

It is a web-based system or software that enables you to manage the functioning of a hospital or any other medical setup. It creates a systematic and standardized record of patients, doctors, and rooms, which can be controlled only by the administrator.

7. Railway System Database

In this database system, you need to model different train stations, railway tracks between connecting stations, the train details (a unique number for each train), rail routes and schedule of the trains, and passenger booking information.

8. Payroll Management System

It is one of the most preferred SQL database project ideas due to its extensive usage across industries. An organization's salary management system calculates the monthly pay, taxes, and social security of its employees.

9. An SMS-based Remote Server Monitoring System

Such systems are particularly beneficial for large corporate organizations having massive data centers and multiple servers. Since these servers host many applications, it becomes tricky to monitor their functionality. Usually, when a server is down or has crashed, the clients inform the organization about it.

10. Blood Donation Database

This database would store interrelated data on patients, blood donors, and blood banks.

11. Art Gallery Management Database

If you are running an art store, you can also organize and manage all your customer information, including names, addresses, the amount spent, liking and interests.

12. Cooking Recipe Portal

This is another application of SQL databases in the creative field. You can model a web portal where a stored procedure will display your cooking recipes under different categories.

13. Carbon Emissions Calculator

Lately, environmental conservation has been receiving a lot of attention globally. You can also contribute to the cause by developing a web application that measures the carbon footprint of buildings.

14. A Voice-based Transport Enquiry System

This innovative tool helps you save time while travelling. You would have noticed long queues outside the transport controller's office at public transport terminals. This is where commuters make inquiries about the different types of transport facilities available. In this scenario, technology-enabled transport enquiry systems can result in huge savings of time and effort. You can develop an automated system for bus stands, railway stations, and airports that can receive voice commands and answer in a voice-based format.

15. Pharmacy Management System

Pharmacy Management System is the process of ensuring that a business maintains an adequate stock of medicines and tablets to meet customer demands without delay

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

1. Silberschatz A., Korth H., Sudarshan S., "Database System Concepts", McGraw Hill Publishers, ISBN 0-07-120413-X, 6th edition

2. Connally T, Begg C., "Database Systems", Pearson Education, ISBN 81-7808-861-4

3. Pramod J. Sadalage and Martin Fowler, "NoSQL Distilled", Addison Wesley, ISBN10: 0321826620, ISBN-13: 978-0321826626

Reference Books:

1. C J Date, "An Introduction to Database Systems", Addison-Wesley, ISBN: 0201144719

2. S.K.Singh, "Database Systems : Concepts, Design and Application", Pearson, Education, ISBN 978-81-317-6092-5

3. Kristina Chodorow, Michael Dirolf, "MangoDB: The Definitive Guide", O'Reilly Publications, ISBN: 978-1-449-34468-9.

4. Adam Fowler, "NoSQL For Dummies", John Wiley & Sons, ISBN-1118905628

5. Kevin Roebuck, "Storing and Managing Big Data - NoSQL, HADOOP and More", Emereopty Limited, ISBN: 1743045743, 9781743045749

- 6. Joy A. Kreibich, "Using SQLite", O'REILLY, ISBN: 13:978-93-5110-934-1
- 7. Garrett Grolemund, "Hands-on Programming with R", O'REILLY, ISBN : 13:978-93- 5110-728-6

B. Tech. Sem. III: Electronics & Telecommunication Engineering					
	SUBJECT: EDA TOOL PRACTICES				
TEACHIN	TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED:				
Theory: 00		End Semester Examination: 00	Credits: 00		
Practical: 02	2	Internal Assessment: 00			
Tutorial: 00		TW: 50 Marks	Credit: 01		
			Total Credit: 01		
Course Pre	-requisites:				
	Elementary E	Elementary Electronics, Electrical Technology.			
Course Obj	jectives:				
1	To introduce	To introduce the students to transient analysis of electronic circuits using simulation software (EDA tool)			
2	To teach the s	To teach the students to carry out AC analysis of amplifiers using simulation software (EDA tool)			
3	To introduce	To introduce the students to simulation tools for basic analog electronic circuits			
4	To introduce the students to simulation tools for basic digital electronic circuits				
5	5 To teach the students to use virtual instruments in an EDA tool				
6	6 To train the students to troubleshoot basic circuits with an EDA tool				
Course Outcomes: After learning this course students will be able to					
1 Per	rform Transient Ana	alysis of simple circuits using EDA tool			
2 Per	2 Perform AC Analysis of simple circuits using EDA tool.				

3	Use an EDA tool for simulating basic analog electronic circuits.
4	Use an EDA tool for simulating basic digital electronic circuits.
5	Use virtual instruments in an EDA tool for analyzing and testing basic electrical and electronic circuits.
6	Use EDA tool for troubleshooting basic circuits.
List of	f experiments:
1.	Study of an EDA tool, concept of simulation, different types of analyses, simulation errors
2.	Study and use virtual instruments, signal, and power sources
3.	Verify Basic circuit laws and theorems using MULTISIM
4.	Construct diode circuits and simulate the same
5.	Construct and analyze BJT biasing circuits
6.	Construct single stage CE amplifier circuit and carry out transient and AC analysis
7.	Implement Boolean equations and implement the same using basic logic gates
8.	Implement circuits with multiplexers and decoders
9.	Troubleshooting a given circuit using EDA tool
Refer	ence Books:
4.	Circuit Analysis with Multisim, David Báez-López Félix E. Guerrero-Castro, Morgan & Claypool Publishers.
5.	Advanced Circuit Simulation Using Multisim Workbench, David Báez-López Félix E. Guerrero-Castro, Morgan & Claypool Publishers

B. Tech. Sem. III: Electronics & Telecommunication Engineering SUBJECT: - PCB DESIGN AND SOLDERING

TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 00		End Semester Examination: 00	Credits: 00	
Practical: 04		Internal Assessment: 00		
Tutorial: 00		TW & OR: 50 Marks	Credit:02	
			Total Credit: 02	
Course Pre-req	uisites:			
	Elementary El	ectronics		
Course Objectiv	ves:			
1	To introduce the basic building blocks for PCB artwork design			
2	To train the student to create simple PCB artwork design using an PCB design tool			
3	To expose the students to soldering process and tools			
4	To train the students to make reliable solder joints			
5	To train the students to de-solder the solder joints			
6	To teach the art of inspecting solder joints			
Course Outcomes: After learning this course students will be able to				
1 Demons	1 Demonstrate the knowledge of selecting proper PCB primitives (track width, pad size, hole size, clearance between pads and tracks,			

	footprints)
2	Use PCB design software for simple sided PCB artwork design
3	Identify and select appropriate soldering tools for the soldering job
4	Use solder iron for soldering through hole components
5	Use solder iron and de-solder pump /wick for de-soldering through hole components
6	Perform electrical (continuity) and visual inspection for solder joints
List of	experiments:
1.	Design a simple (only discrete components) single sided PCB using PCB design software (PCB artwork design flow)
2.	Design a single sided PCB using PCB design software for a circuit with IC components
3.	Design a double-sided PCB using PCB design software
4.	Study and use of tools like solder iron (types and temperature profile), wire-strippers, cutters
5.	Study of solder alloys, flux and rosin
6.	Solder basic electronic components like resistors, capacitors, IC bases (through hole)
7.	Use de-solder pump/wick for de-soldering components
8.	Carry out electrical continuity test and visual inspection for a soldered board
Refere	ence Books:
1.	Getting Started with Soldering: A Hands-On Guide to Making Electrical and Mechanical Connections, Marc de Vinck, Maker Media, Inc, 2017
2.	Soldering in electronics assembly, MIKE JUDD, Keith Brindley, Newnes, 1999

3.	Printed Circuits Handbook, Clyde F. Coombs, Jr., McGraw-Hill, 2008
4.	User Manual for the selected PCB Design Software
5.	Getting Started with Soldering: A Hands-On Guide to Making Electrical and Mechanical Connections, Marc de Vinck, Maker Media, Inc, 2017

B. Tech. Sem. III: Electronics & Telecommunication Engineering SUBJECT: - NETWORKING

TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory: 00		End Semester Examination: 00	Credits: 00		
Practical: 00		Internal Assessment: 00			
Tutorial: 00		TW & OR: 50 Marks	Credit: 02		
			Total Credit: 02		
Course Pre-r	equisites:				
The Students	should have know	ledge of			
1.	Understanding	g of personal computers and operating	systems		
Course Objectives:					
1	To explain the	To explain the fundamental concepts of networking			
2	To educate wi	To educate with the architecture, protocols, and networking			
3	To update the trends in innovation approach towards development of high-speed networks		development of high-speed networks		
4	4 To analyze the challenges involved in developing TCP/IP suite		CP/IP suite		
5	5 To compare wired and wireless real networks				
6	6 To explain network security system				
Course Outcomes: After learning this course students will be able to					
1 Design, install, and troubleshoot networks					

2	Identify the protocol in networking				
3	Analyze the required technical competencies for traffic management to embark on growing career as Network Engineer/				
	Networ	Network Administrator			
4	Demon	strate the knowledge of TCP and its application scenarios			
5	Compa	re different constraints in wired and wireless domain			
6	Identify	the systems, protocols, and mechanisms to support network security			
UNIT -	- I	Network& Service			
		Approaches to Network design, Network topologies and design constraints, Transmission media			
		- unguided and guided, OSI Reference Model; TCP/ IP protocol suite, Application Layer			
		Protocols and TCP/IP. Peer-to-peer protocols, Service Models, ARQ Protocols and reliable data			
	transfer service, sliding Window Flow Control.				
UNIT -	- II	Medium Access Control Protocol			
		Multiple access communication, Random access scheduling approaches to medium access			
		control, Delay performance of MAC and channelization schemes, LAN Access methods,			
		Introduction to LAN, MAN, WAN Standards, FDDI, WLAN, Hubs, Bridges and Switches			
		Ethernet networking.			
UNIT -	III	Packet Switching Networks			
		Network Services and Internal Network Operation, Packet Network Topology, Routing in packet			
		Networks, shortest path Algorithms, and Introduction to traffic management & QoS.			

UNIT -IV	TCP/IP Architecture	
	Medium Access control (MAC) sub layer: MAC protocols: ALOHA, Slotted ALOHA, The	
	Internet Protocol, IP addressing and subnetting, Limitations of IPv4 and Introduction to IPv6,	
	User Datagram protocol, Transmission Control Protocol, Introduction to Internet Routing	
	Protocols.	
UNIT -V	Wireless Routing Protocols and Wired Connectivity	
	Introduction to radio transmissions, Packet radio Routing Internet based mobile ad-hoc	
	networking, communication strategies, routing algorithms Destination sequenced Distance	
	Vector (DSDV), Dynamic source Routing (DSR), Ad-hoc On demand Distance Vector(AODV)	
	&Temporarily Ordered Routing algorithm (TORA), Quality of service.	
	Introduction to optical network, SONET / SDH, Broadcast and select WDM Networks	
UNIT -VI	Network Security &Software Defined Networks	
	Introduction to security, Security approaches, Principles of security, Types of Security attacks,	
	Cryptography: plain text and cipher text, substitution techniques, encryption, and decryption,	
	Software Defined Network: Comparison between SDN and traditional networks, SDN controller,	
	Switch design, Switch Protocols, Control Overhead & Handoff algorithms.	
List of Experim	nents:	
1. Conne	cting two or more computers using RJ45	

- 2. Implementation of bus topology in MATLAB/ NS-2.
- 3. Implementation of star topology in MATLAB/ NS-2.
- 4. Simulation of sliding window protocolsMATLAB/ NS-2.
- 5. Describe functions of OSI layers and its architecture.
- 6. Explain TCP / IP protocol suite.
- 7. Explain cryptography, symmetric-key algorithms.
- 8. Simulation of basic optical network using Optisystem.

Text Books:

- 1. Computer Networks Andrew S Tanenbaum, 4th Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan, Fifth Edition TMH, 2013
- 3. William Stallings, High speed Networks TCP/IP & ATM Design Principles, PH, NY

Reference Books:

- 1. Computer Networking: A Top-Down Approach Featuring the Internet, James F. Kurose, K. W. Ross, 3rd Edition, Pearson Education
- Rottinghous, John W., and James F. Ransome, Cloud Computing: Implementation, Management and Security, CRC Press, 2017.

B. Tech. Sem. IV: Electronics & Telecommunication Engineering					
	SUBJECT: - CONTROL SYSTEMS AND APPLICATIONS				
TEACHING S	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory: 04		End Semester Examination: 60 Marks	Credits: 04		
Practical: 02		Internal Assessment: 40 Marks			
Tutorial: 00		TW: 25 Marks	Credit: 01		
			Total Credit: 05		
		•	· · · ·		
Course Pre-req	uisites:				
The Students she	ould have know	ledge of			
1.	Basic knowledge of signals.				
2.	Basic mathematical tools like Laplace transform				
3.	Basic knowledge of software like MATLAB				
Course Objecti	ves:				
	To provide in depth knowledge of the various types of control systems and determination of transfer function using different methods.				
	• To analyze the first order and second order system in time domain.				
	• To introduce the concept of different types of controllers and compensators.				
	• To analyze the control system in frequency domain.				

		• To analyze the digital control systems in time domain.		
		• To provide state variable analysis.		
Course	Outcom	es: After learning this course students will be able to		
1	Identify and sign	various control systems and determine the 'Transfer Function' of a system using block diagram re nal flow graph.	duction technique	
2	Determ using R	ine the time response for different system, the errors in various control systems; evaluate the sta outh's Stability Criterion and analysis graphical technique such as root locus.	bility of a system	
3	Demon compen	strate the knowledge of control actions such as Proportional (P), Integral (I), Derivative (asators.	D), PI, PID and	
4	Determine frequency response and different graphical methods like Bode plot and polar plot.			
5	Calculate the time response for digital control systems and design digital control system.			
6	Implem	ent the state variables for state variable model for linear as well as digital control systems.		
UNIT -	- I	Introduction to Control System	(08 Hours)	
		Introduction to analog as well as digital control system, Classification of Control System, control		
		problem, Feedback and Non-feedback Systems, Transfer Function, Block diagram and signal		
		flow graph analysis, Pulse transfer function, Sampled Signal Flow Graph.		
UNIT -	- II	Time Domain Analysis	(08 Hours)	
		Time response of first order & second order system using standard test signal, steady state errors		

	and error constants, Root locus techniques- Basic concept, rules of root locus, application of root	
	locus techniques for control system, Hurwitz and Routh stability criteria.	
UNIT - III	Controllers and Compensators	(08 Hours)
	Effect of Poles and Zeros on the System Stability, Types of Compensators, Lead, Lag, Lead-Lag	
	Compensators design, Control actions - On/Off, P, PI, PD, PID. PLC Architecture, Introduction	
	to Ladder Diagram, Examples of ladder diagram.	
UNIT -IV	Frequency Domain Analysis	(08 Hours)
	Relationship between time & frequency response, Polar plots, Bode plot, stability in frequency	
	domain, Nyquist stability criterion.	
UNIT -V	Digital control systems	(08 Hours)
	Time Response of discrete time systems: Time response specifications, Steady state error, error	
	constants, time response for 1st order and 2nd order systems.	
	Design of sampled data control system: Root locus technique, Bode plot, Nyquist stability	
	criteria, lead compensator design using Bode plot, lead compensator design using Bode plot, lead	
	compensator design using Bode plot.	
UNIT -VI	State variable analysis	(08 Hours)
	State variable representation-Conversion of state variable models to transfer functions-	
	Conversion of transfer functions to state variable models-Solution of state equations-Concepts of	

Controllability and Observability-Stability of linear systems-Equivalence between transfer
functionand state variable representations-State variable analysis of digital control system-
Digitalcontroldesign using state feedback.
Term Work: Any 8 of below given list
1. Unit Step and Impulse response of the Transfer function using MATLAB.
2. Transient response of second order system using MATLAB
3. To draw Root Locus theoretically (analog and digital) and verify it using MATLAB.
4. To draw Bode plot theoretically (analog and digital) and verify it using MATLAB.
5. Magnitude and phase plot of Lead network (analog and digital).
6. Magnitude and phase plot of Lag network (analog and digital).
7. To study architecture of PLC.
8. Ladder diagram example using Virtual Lab
9. Implementation of DOL Starter Virtual Lab
10. Implementation of On-Delay Timer Virtual Lab
11. Implementation of Off-Delay Timer Virtual Lab
12. Implementation of Up-Down Counter Virtual Lab
13. Implementation of PLC Arithmetic Instructions Virtual Lab
14. Implementation of PID Controller Virtual Lab

Topics for projets based learning*

1. Maintaining constant speed (cruise control) and constant temperature (climate control) and maintaining pressure

2. Engine control, steering control, suspension control

3. Control skidding (antiskid system)

4. Automatic warehousing

5. Inventory control

6. Automation of farming

7. Commercial rail transportation

8. Biomedical CS

9. Design and Experimentation of Cable-Driven Platform Stabilization and Control Systems

10. Minimization of Energy Consumption in Underfloor Heating Systems

11. Automatic Water Pump Controller

12. Design, Analysis and Testing of a Flapping Wing Miniature Air Vehicle

13. Design Cognitive mobile robot model

14. PLC Based Performance Analysis Of Range Sensors For A Real-Time Power Plant Coal Level Sensing System.

15. Mine Water Level Fuzzy Control System Design Based On PLC.

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

- 1. I.J. Nagrath, M.Gopal "Control Systems Engineering", 5th Edition, New Age International Publication
- 2. Schaum's Series book "Feedback Control Systems".
- 3. Les Fenical "Control Systems", 1st Edition, Cengage Learning India.
- 4. R. Anandanatarajan, P. Ramesh Babu, "Control Systems Engineering", Scitech Publications

Reference Books:

- 1. Norman S. Nise "Control Systems Engineering", 4th edition, Wiley edition.
- 2. Samarjeet Ghosh, "Control Systems Theory & Applications", 1st edition, Pearsoneducation.
- 3. S.K. Bhattacharya, "Control Systems Engineering", 1st edition, Pearson education.
4. Hackworth, "Programmable Logic Controller", 1st edition, Pearson education.

B. Tech. Sem. IV: Electronics & Telecommunication Engineering SUBJECT: - INTEGRATED CIRCUITS AND APPLICATION

TEACH	HING SCHEN	ME:	EXAMINATION SCHEME:		CREDITS ALLOTTED:
Theory: 04			End Semester Examination: 60 Marks		Credits: 04
Practical: 02			Internal Assessment: 40 Marks		
Tutorial	:00		TW & PR: 50 Marks		Credit: 01
					Total Credit: 5
Course	Course Pre-requisites:				
	SDO	C-I, SDC-2	, Electronics Network Theory		
	·				
Course	Objectives:				
1. To introduce		introduce th	he OPAMP and its internal building blocks		
2. To provide the		provide the	e basics of analysis and design of linear and nonlinear applications of Op-Amp		
3. To introduce		introduce th	the students to design of active filters		
4. To introduc		introduce th	the students to analysis and design of OPAMP based waveform generators		
5. To introduc		introduce th	e the Timer IC 555 and its applications		
6. To introduce		introduce P	LL, Three terminal voltage regulators as	nd ADC/D	AC and their applications
Course	ourse Outcomes: After learning this course students will be able to				
1	Visualize the	e internal b	locks of a typical OPAMP IC and interp	oret the OP.	AMP parameters
2	Analyze and design linear and nonlinear applications of OP-AMP.				

3	Analyze and design first and second order active filters using OP-AMP					
4	Analyze and design Waveform Generators using OP-AMP.					
5	Design	of multivibrators using Timer IC 555				
6	Demons termina	strate knowledge of Phase Locked Loop IC 565 and its application and design linear power supply us I voltage regulators, classify ADC and DAC devices	sing three			
LINIT	T	OPAMP Internals	(08 Hours)			
	UNIT - 1OPAMP Internals(08Amplifier types (voltage, current, transconductance, trans resistance), Limitations of CE amplifiers, Block diagram of OPAMP, Differential amplifier with and without constant current tail (review), Level Shifter, Complementary Symmetry Output power amplifier, Frequency compensation, Ideal and practical characteristics of OPAMP, Parameters of practical OPAMP, Offset voltage balancing.					
UNIT –	· II	Linear Applications of OPAMP-I	(08 Hours)			
		DC and AC inverting amplifier, DC and AC Non-Inverting Amplifier, DC and AC Voltage Follower circuit, Summing Amplifier, Difference Amplifier, Instrumentation Amplifier, I-V and V-I converters				
UNIT -	UNIT - III Linear Applications of OPAMP-II					
	Integrator, Differentiator, Active Filters, Log, and anti-log amplifiers					
UNIT -	IV	Non-Linear Applications of OPAMP	(08 Hours)			
	Comparator and Schmitt Trigger circuit, Window detector, Precision rectifiers, Peak detector,					

	Sample and Hold circuit				
UNIT -V	Waveform Generators	(08 Hours)			
	Positive Feedback and Barkhausen criteria, Wein bridge oscillator, RC Phase shift oscillator,				
	Colpitts oscillator, Hartley oscillator, square wave generator, Triangular wave generator, IC 555 astable and monostable circuits				
UNIT -VI	Voltage Regulators, PLL and Mixed Signal Circuits	(08 Hours)			
	Three terminal IC voltage regulators, Voltage Controlled Oscillator and Phase Locked Loop, Parameters of DAC, Digital-to-Analog Converters (Binary weighted, R-2R ladder network type), Analog to Digital Converters (Flash, Successive Approximation, Integrating) Parameters of ADC, Introduction to sigma-delta ADC.				
List of experime	ents:				
1. Design, bui	ld and test DC inverting, non-inverting, and voltage follower circuits				
2. Design, bui	ld and test AC inverting, non-inverting and voltage follower circuits, plot frequency response				
3. Design, bui	ld and test inverting, non-inverting summing amplifier circuits				
4. Design, bui	4. Design, build and test integrator circuit and plot frequency response				
5. Design, build and test differentiator circuit and plot frequency response					
6. Design, build and test 1st order active LPF and HPF and plot frequency responses					
7. Design, bui	7. Design, build and test Wein bridge oscillator				
8. Design, bui	8. Design, build and test RC phase shift oscillator				
9. Design, build and test astable multivibrator using IC555					

10. Measure line and load regulation of three terminal regulator
Topics for projets based learning*
1.Audio Mixer
2. Stereo Pre-amplifier
3. Graphic Equalizer
4. Burglar alarm
5. Tachometer
6. Universal Battery charger
7. Function Generator
8. Fixed voltage regulated power supply
9. Variable output voltage regulated power supply
10. Dual polarity regulated power supply
11. Electronic stethoscope
12. Digitally selectable precision attenuator
13. Bridge amplifier for stereo
14. Bar graph battery voltage indicator
15. Touch sensitive switch
*Students in a group of 3 to 4 shall complete any one project from the above list
Textbooks:
1. Operational Amplifiers and Linear ICs, David A. Bell, 3rd Edition, 2008, ISBN:0195696131, 9780195696131, Oxford University Press

2. Design with Operational Amplifiers and Analog Integrated Circuits, Sergio Franco, 4th Edition, McGraw-Hill

B. Tech. Sem. IV: Electronics & Telecommunication Engineering					
SUBJECT: - ELECTROMAGNETICS AND TRANSMISSION LINE					
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory: 03		End Semester Examination: 60 Marks	Credits: 03		
Practical: 00		Internal Assessment: 40 Marks			
Tutorial: 01			Credits:01		
			Total Credit: 04		
Course Pre-requisit	ces:				
Fur	Fundamentals of Vector Analysis and Mathematical Calculus				
Course Objectives:					
	To analyze basic Electrostatic laws such as Coulomb's law and Gauss law				
	• To compute boundary conditions with electrostatic parameters				
	• To analyze basic Magnetostatic laws such as Biot-Savart's Law and Ampere's Law				
	• To evaluate Maxwell's equation				
	• To demonstrate wave propagation through different media				
	• To examine transmission Line and impedance matching techniques				
Course Outcomes: After learning this course students will be able to					
1 Analyze electric field in different field distributions					

2	Identify	Identify the Electrostatic parameters				
3	Analyz	Analyze magnetostatic field in different field distributions				
4	Evaluat	e time varying Electric and Magnetic Fields				
5	Charact	terize wave equation				
6	Compu	te Transmission Line and its applications				
UNIT –	- I	Electrostatic-I	(06 Hours)			
		Coulomb's law, Electrostatic Field Intensity, Calculation of Electric field for: infinite line,				
		surface, volume charge distribution, Electric flux density, Concept of Divergence, Gauss Law,				
Application of Gauss's law for: point, infinite line, infinite sheet, uniformly charged sphere.						
UNIT –	- II	Electrostatic-II	(06 Hours)			
		Electric Potential, Relation between Electric Field and Potential, Energy Density, Resistance,				
	Capacitance, Boundary Condition					
UNIT - III		Magnetostatics	(06 Hours)			
		Biot-Savart's Law, Application of Biot-Savart's Law, Stoke's Theorem, Ampere's Law,				
App		Application of Ampere's Law, Forces due to Magnetic Field, Boundary Conditions, Inductor,				
		and Inductance. Standard inductance configurations: Toroid, Solenoid. Materials in magnetic				
		fields.				

UNIT -IV	Time Varying Fields and Maxwell's Equation	(06 Hours)		
	Faraday's Law, Transformer and Motional Electromotive Forces, Displacement Current,			
	Maxwell's Equation in both differential form and integral form.			
UNIT -V	Wave Propagation/ Uniform Plane Wave	(06 Hours)		
	Wave Propagation in Lossy Dielectrics, Plane Waves in Lossless Dielectrics, Plane Waves in			
	Free Space, Plane Waves in Good Conductors, Power and Poynting Vector, Reflection of a Plane			
	Wave at Normal Incidence.			
UNIT -VI	Transmission Lines and Impedance Matching Techniques	(06 Hours)		
	Transmission Line Parameters, Transmission Line Equations, Input Impedance, Standing Wave			
	Ratio and Power, Smith Chart, Stub Matching Technique, QWT, Single Stub Matching, Double			
	Stub Matching, EMC-EMI, Types of EMC.			
List of Tutorial	<u>ls:</u>			
1. Applicat	ion of Stoke's theorem.			
2. Applicat	ion of Gauss's law			
3. Energy s	3. Energy stored in capacitor.			
4. Applicat	4. Application of Poission's and Laplace's equations.			
5. Boundar	5. Boundary conditions for magnetic fields.			
6. Poynting	6. Poynting theorem and their applications.			

- 7. Applications of Smith Chart.
- 8. Simulation on Electromagnetic Interference and Compatibility

Topics for projets based learning*

1.Design Electrostatic Speakers using the concept of Electrostatic Forces and Energy

2. Study the Faraday Cage

3. Build Lightning Rod

4. Study and survey on Xerography – Electrostatic Imaging

5. Design any Electrostatic Filters

6. Design a gauge that is sensitive to the fluid level in the capacitive gauge.

7. Calculate characteristic impedance and propagation speed of a coaxial cable based on measured dimensions

8. Design a metal detecting device based on mutual inductance

9. Design a non-contact probe that can detect the presence and polarity of a static (or slowly varying) electric field in air

10. Design a non-contact AC current meter

11. Study and survey on Heart Defibrillators

12. Study and survey on Hard Disk Reading and writing process

13. Design Metal detectors

14. Study and survey on Magnetic Resonance Imaging (MRI)

15. Design Magnetic Brakes

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

1. Matthew N. O. Sadiku, "Principles of Electromagnetics", 4th Edition, Oxford University Press.

Reference Books:

- 1. John D. Kraus "Electromagnetic", McGraw Hill.
- 2. William Hyte "Electromagnetic Engineering", McGraw Hill
- 3. Edminister J.A, Electromagnetics, Tata McGraw-Hill.

4. R.K Shevgaonkar, Electromagnetic waves, Tata McGraw-Hill.

5. S Salivahanan& S Karthie, "electromagnetic Field Theory" Vikas Publishing House Ltd.

B. Tech. Sem. IV: Electronics & Telecommunication Engineering						
	SUBJECT: - ANALOG COMMUNICATION					
TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED:			CREDITS ALLOTTED:			
Theory: 04			End Semester Examination: 60 Marks	Credits: 04		
Practical: 02			Internal Assessment: 40 Marks			
Tutorial	:00		TW & OR: 50 Marks	Credit: 01		
				Total Credit: 5		
			·			
Course	Pre-req	uisites:				
	Signals and Linear Systems.					
		I				
Course	Objectiv	ves:				
1.		To introduce essential components of communication system.				
2.		To teach the students DSB-FC modulation and demodulation and its mathematical background				
3.	3. To teach the students DSB-SC & SSB modulation and demodulation and its mathematical background			ulation and its mathematical background		
4. To teach the students frequency modulation and demodulation and its mathematical background		n and its mathematical background				
5.	To introduce the students working of radio receivers.					
6.	6. To introduce the students analog to digital conversion technique in communication system			e in communication system		
Course Outcomes: After learning this course students will be able to						
1	Identify the basic components and effect of noise on communication system					
2	Demons	Demonstrate the knowledge of DSB-FC modulation and demodulation and its mathematical background				

3	Demon	emonstrate the knowledge of DSB-SC & SSB modulation and demodulation and its mathematical background				
4	Demon	emonstrate the knowledge of frequency modulation and demodulation and its mathematical background				
5	Identify	ntify components of communication receiver system.				
6	Demon	strate the knowledge of Pulse Modulation technique				
UNIT -	- I	Principles of Communication Systems	(08 Hours)			
		Review of signals and systems, Frequency domain of signals, Block schematic of communication				
		system, base band signals, RF bands, Necessity of modulation, Types of channels, Noise types -				
		Internal & External, Noise Calculations, Signal to Noise ratio, Noise figure, Noise Temperature				
UNIT – II		Amplitude Modulation-I	(08 Hours)			
Amplitude Modulation principles,		Amplitude Modulation principles, Representation of AM, Frequency spectrum & BW,				
		Modulation index, % modulation, Power relations in AM, Trapezoidal patterns-, high- and low-				
		level AM transmitters, DSB-FC Generation-linear and non-linear modulator, Linear modulators-				
		low- and high-level linear modulators, Non-linear modulators- square law modulator and				
	switching modulator, DSB-FC Demodulation- square law detector and envelope/diode detector.					
UNIT - III Amplitude Modulation-II		Amplitude Modulation-II	(08 Hours)			
		DSB-SC Principles, DSB-SC Generation Methods: Multiplier modulator, linear modulator, non-				
		linear modulator and switching modulator, DSB-SC Demodulation-synchronous and coherent				
	detection, SSB Principles, SSB Generation Methods: Filter method, phase shift method &the					

	third method,SSB Demodulation, Comparison of AM,DSB-SC and SSB, Independent sideband	
	system (ISB), Vestigial sideband (VSB).	
UNIT -IV	Frequency Modulation	(08 Hours)
	Angle Modulation, Principles, mathematical analysis of FM, frequency deviation and percentage	
	modulation, modulation index, deviation ratio, Bessel function, BW requirements, Narrow band &	
	wide band FM, Pre-emphasis and de-emphasis, FM modulators - Direct & Indirect modulator,	
	Direct modulator- varactor diode modulator, reactance modulator-frequency stabilized reactance	
	modulator, Indirect modulator- Armstrong method, FM demodulators - Direct & Indirect	
	detector, Types of direct detectors, Indirect detector-phase locked loop.	
TINITO X7	י מינ מ	
UNIT-V	Radio Receivers	(08 Hours)
UNIT-V	Radio ReceiversBlock diagram of AM receiver- TRF and Super heterodyne receiver, FM receiver,	(08 Hours)
UNIT-V	Radio ReceiversBlock diagram of AM receiver- TRF and Super heterodyne receiver, FM receiver,receiverperformance and measurement parameters: Sensitivity, Selectivity, fidelity, Image	(08 Hours)
UNIT-V	Radio ReceiversBlock diagram of AM receiver- TRF and Super heterodyne receiver,FM receiver,receiverperformance and measurement parameters: Sensitivity, Selectivity, fidelity, ImageFrequency Rejection, Automatic Gain Control (AGC)- simple and delayed AGC, IF Amplifiers,	(08 Hours)
UNIT-V	Radio ReceiversBlock diagram of AM receiver- TRF and Super heterodyne receiver,FM receiver,receiverperformance and measurement parameters: Sensitivity, Selectivity, fidelity, ImageFrequency Rejection, Automatic Gain Control (AGC)- simple and delayed AGC, IF Amplifiers,Tracking- Two point and three-point tracking, Mixers-separately excited mixers and self-excited	(08 Hours)
UNIT-V	Radio ReceiversBlock diagram of AM receiver- TRF and Super heterodyne receiver,FM receiver,receiverperformance and measurement parameters: Sensitivity, Selectivity, fidelity, ImageFrequency Rejection, Automatic Gain Control (AGC)- simple and delayed AGC, IF Amplifiers,Tracking- Two point and three-point tracking, Mixers-separately excited mixers and self-excitedmixers.	(08 Hours)
	Radio Receivers Block diagram of AM receiver- TRF and Super heterodyne receiver, FM receiver, receiverperformance and measurement parameters: Sensitivity, Selectivity, fidelity, Image Frequency Rejection, Automatic Gain Control (AGC)- simple and delayed AGC, IF Amplifiers, Tracking- Two point and three-point tracking, Mixers-separately excited mixers and self-excited mixers.	(08 Hours)
UNIT -VI	Radio Receivers Block diagram of AM receiver- TRF and Super heterodyne receiver,FM receiver, receiverperformance and measurement parameters: Sensitivity, Selectivity, fidelity, Image Frequency Rejection, Automatic Gain Control (AGC)- simple and delayed AGC, IF Amplifiers, Tracking- Two point and three-point tracking, Mixers-separately excited mixers and self-excited mixers. Pulse Modulation	(08 Hours) (08 Hours)
UNIT -VI	Radio Receivers Block diagram of AM receiver- TRF and Super heterodyne receiver,FM receiver, receiverperformance and measurement parameters: Sensitivity, Selectivity, fidelity, Image Frequency Rejection, Automatic Gain Control (AGC)- simple and delayed AGC, IF Amplifiers, Tracking- Two point and three-point tracking, Mixers-separately excited mixers and self-excited mixers. Pulse Modulation Sampling process, Sampling Theorem,Nyquist criteria, Sampling types: Natural & flat top	(08 Hours) (08 Hours)
UNIT-V UNIT-VI	Radio Receivers Block diagram of AM receiver- TRF and Super heterodyne receiver,FM receiver, receiverperformance and measurement parameters: Sensitivity, Selectivity, fidelity, Image Frequency Rejection, Automatic Gain Control (AGC)- simple and delayed AGC, IF Amplifiers, Tracking- Two point and three-point tracking, Mixers-separately excited mixers and self-excited mixers. Pulse Modulation Sampling process, Sampling Theorem,Nyquist criteria, Sampling types: Natural & flat top sampling, aliasing error and aperture effect, Pulse Modulation-PAM modulator & demodulator,	(08 Hours) (08 Hours)

PPM, Multiplexing, TDM- transmitter and receiver, FDM- transmitter and receiver.	
List of experiments.	
1. Write a MATLAB program for generation of AM signal	
2. Write a MATLAB program for generation of DSB-SC signal	
3. Write a MATLAB program for generation of FM signal	
4. To perform Amplitude Modulation and Demodulation.	
5. To performDSB-SC Modulation & Demodulation.	
6. To performFrequency Modulation and Demodulation	
7. To perform sampling and Reconstruction of a signal.	
8. To performPulse Amplitude Modulation (PAM.)	
9. To performPulse Width Modulation (PWM)	
10.To performPulse Position Modulation (PPM)	
Topics for projets based learning*	
1. Survey report on types of noise and its impact on communication system	
2. Survey report on types of AM modulators and demodulators	
3. Build simple AM transmitter system using linear modulator	
4. Build simple AM transmitter system using non-linear modulator	
5. Build simple AM receiver system	
6. Survey report on types of FM modulators and demodulators	

- 7. Build simple FM transmitter system using direct modulator
- 8. Build simple FM transmitter system using indirect modulator
- 9. Build simple FM receiver system using direct demodulator
- 10. Build simple FM receiver system using indirect demodulator
- 11. Build a circuit for sampling and seconstruction of a signal.
- 12. Build the Pulse Amplitude Modulation circuit
- 13. Build the Pulse Width Modulation circuit
- 14. Build the Pulse Position Modulation circuit
- 15. Build the Pulse Position demodulation circuit
- *Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

- 1. Electronics Communication System, George Kennedy, 4th Edition, Tata McGraw HillPublication.
- 2. Modern Digital and analog Communication System, B.P.Lathi, Oxford University press.

Reference Books:

- 1. Principles of Communication Systems, Taub&Schilling, Tata McGraw-Hill Publication.
- 2. Communication Systems, Simon Haykin, 4th Edition, John Wiley & Sons.
- 3. Electronics Communications, Dennis Roddy, John Coolen, 4th Edition- PearsonEducation.

B. Tech. Sem. IV: Electronics & Telecommunication Engineering					
SUBJECT: - DATA SCIENCE					
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory: 03		End Semester Examination: 60 Marks	Credits: 03		
Practical: 02		Internal Assessment: 40 Marks			
Tutorial: 00		TW: 25 Marks	Credits: 01		
			Total Credits: 04		
Course Pre-re	equisites:				
	Python Progr	amming and DBMS.			
Course Objec	tives:				
	 To acquire in-depth understanding of the fundamental concepts in data modeling, data analysis, statistics, machine learning techniques. To strengthen the analytical and problem-solving skill through developing real time Use cases. To gain practical experience in programming tools for data sciences, database systems, machine learning and Visualization tools. To empower students with tools and techniques for handling, managing, analyzing and interpreting data. 				
Course Outcomes: After learning this course students will be able to					
1 Devel	1 Develop a schema design, perform ETL operations with normalized techniques.				
2 Visua	2 Visualize the data and detect anomalies with the help of statistical methods.				
3 Imple	3 Implement ANOVA test, Regression & Dimensionality Reduction Techniques.				

4	Model different machine learning algorithms and draw predictive outcomes.							
5	Develo	p an interactive and functional Dashboard using Power BI.						
6	Visuali	ze the data using Power BI						
			I					
UNIT -	– I	Fundamentals of Data Analysis using MySQL	(06 Hours)					
		Introduction to Data Science, DBMS approach to analytics, ER Diagram and Schema design,						
		Normalization techniques, data cleaning and transforming – Extract, Transform & Load.						
UNIT -	- II	Data Analysis and Visualization with Excel, Python	(06 Hours)					
		with Excel: Descriptive statistics. Outlier detection. Visualization: Box plot. Line chart. Pie						
	chart. Bar charts. Histogram.							
		With Python: Pandas and Numpy, Data modelling and transforming, dealing with null values,						
		different data types, preparing data for the model, Visualization with Matplotlib, Seaborn.						
UNIT -	· III	Advanced Statistics	(06 Hours)					
		Analysis of Variance (ANOVA), Regression Analysis: linear regression, multiple linear, and						
		non-linear regression, Dimension Reduction Techniques.						
UNIT -	·IV	Machine Learning-I	(06 Hours)					
		Introduction to Supervised and Unsupervised Learning, Clustering, Decision Trees, Random						
	Forest, Multiple Linear Regression, Logistic Regression, Linear Discriminant Analysis							

UNIT -V	Machine Learning-II	(06 Hours)							
	Time Series Forecasting: Introduction to Time Series, Correlation, Forecasting, Autoregressive								
models; Model Validation, Handling Unstructured Data.									
UNIT -VI Data visualization using Power BI									
	Introduction to Power BI, Basic charts and dashboard, Descriptive Statistics, Dimensions and								
	Measures, Visual analytics: Storytelling through data, Dashboard design & principles.								
Term Work: A	ny 8 of below given list								
1. SQL - N	orthwind Trader Database: Schema Design, Normalization & Cleaning.								
2. Northwin	nd Trader Database: Querying.								
3. Statistics	s & Visualization with Excel.								
4. Handling	g data using Python Pandas – Load (Multiple sources such as – Excel, SQL, CSV, URL), Transform.								
5. Explorate	ory Data Analysis & Visualization using Python.								
6. Machine	Learning [Supervised] – Regression (Linear, Logistic & Multi-Linear.								
7. Machine	Learning [Supervised] – Classification (Logistic Regression, Decision Tree & Random Forest, KNN	N, K Mean							
Clustering, SVM).									
8. Machine	8. Machine Learning [Time series] – ECG Analysis.								
9. Machine	Learning – Titanic Dataset Analysis (EDA)-1.								
10. Machine	Learning – Titanic Dataset Analysis (Visualization & Prediction)-2.								

11. Power BI – Input & Transforming Data.

12. Power BI – Creating Visuals & Reports.

13. Power BI – Dashboard.

Topics for projets based learning*

- 1. Design/Model a database without normalizing from scratch and create an E-R diagram as schema. Apply normalization techniques to previous created tables and perform Data Wrangling & Data Cleaning.
- 2. Implement an Email automation system using SQL & Python.
- 3. Create a Spotify Music Analysis visualization using Python pandas.
- 4. Create a Crypto currency Analysis visualization using Python pandas.
- 5. Build a Netflix like Movie recommendation model using Machine Learning.
- 6. Build a Song recommendation model using Machine Learning.
- 7. Build a Book recommendation model using Machine Learning.
- 8. Create a Credit Card Fraud Detection system using Machine Learning Algorithms.
- 9. Create a cheque clearance model using Machine Learning Algorithm.
- 10. Twitter Sentiment Analysis.
- 11. Uber Dataset Time Series Analysis.
- 12. Build a dynamic functional ChatBot using reddit conversations as dataset.
- 13. Build a Machine Learning Model with Health Care Data.
- 14. Create an interactive Super Store Dataset using PowerBI.
- 15. Create a Dashboard on Covid Vaccine Tracker using PowerBI.

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

 Introduction to Machine Learning with Python: A Guide for Data Scientists by Andreas C. Mueller, Sarah Guido, O'Reilly Publication.

- 2. Practical Statistics for Data Scientists by Peter Bruce, Andrew Bruce, O'Reilly Publication.
- Microsoft Power BI Quick Start Guide: Build dashboards and visualizations to make your data come to life, by Devin Knight, Brian Knight, Packt Publishing.

Reference Books:

1. Python Machine Learning By Example: The easiest way to get into machine learning, by Yuxi (Hayden) Liu, Packt Publishing.

2.Mastering Microsoft Power BI: Expert techniques for effective data analytics and business intelligence, by Brett Powell, Packt Publishing.

	B. Tech. Sem. IV: Electronics & Telecommunication Engineering						
		SUBJECT: - ADVANCED COM	PUTER PROGRAMMING				
TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:				
Theory: 00		End Semester Examination: 00	Credits: 00				
Practical: 04		Internal Assessment: 00					
Tutorial: 00		TW & OR: 50 Marks	Credit: 02				
			Total Credit: 02				
		·					
Course Pre-re	equisites:						
1.	C programmin	ng.					
Course Object	tives:						
	1. To intr	roduce the basic building blocks for JAV	VA programming				
	2. To tea	ch the concept of multithreading and ex	ception handling.				
	3. To tea	ch the lambda functions.					
	4. To trai	n the student to use java script.					
	5. To train the student to use HTML.						
Course Outco	omes: After lea	rning this course students will be able	e to				
1	Demonstrate th	e knowledge of basic programming in J	AVA.				
2	Implement the concept of multithreading and exception handling.						

3	Use the lambda functions.
4	Implement the concept of JavaScript.
5	Implement the concept of HTML.
6	Design webpage using JavaScript and HTML.
Term	Work: Any 16 of below given list
1.	Introduction to basics of JAVA and JAVA installation.
2.	WAP to implement static and non-static members and their execution control flow.
3.	WAP to implement wrapper class.
4.	WAP to implement flow control statements, looping statements and arrays.
5.	WAP to implement:
	a. Inheritance
	b. Abstraction
6.	WAP to implement:
	a. Polymorphism
	b. Encapsulation
7.	WAP to implement exception handling and assertions.
8.	WAP to implement multithreading.
9.	WAP to implement callable and future.
10.	WAP to implement string handling.

11. WAP to implement IO streams.

12. WAP to implement collection Array List.

13. WAP to implement collection LinkedList.

14. WAP to implement lambda functions with predicates.

15. WAP to implement lambda functions with streams.

16. WAP to implement annotations.

17. WAP to implement the basics of HTML

18. WAP to implement the basics of java script

19. WAP to implement handling of events and errors, debugging with java scripts.

20. A mini-project to create Web Pages using HTML and JavaScript.

Text Books:

1. Programming with Java: A Primer, 3E by E Balagurusamy, Tata McGraw Hill Publishing Company.

Reference Books:

- 1. Java Complete Reference, Herbert Schildt, McGraw Hill Publishing Company
- 2. Java: How to Program by Deitel and Deitel
- 3. Ivan Bayross, "Web Enabled Commercial Applications Development Using HTML, DHTML, JavaScript, Perl CGI", BPB Publication.

B. Tech. Sem. IV: Electronics & Telecommunication Engineering SUBJECT: - SENSOR MODELLING AND SIMULATION LABORATORY

TEACH	HING SC	HEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:			
Theory:	00		End Semester Examination: 00	Credits: 00			
Practica	l: 02		Internal Assessment: 00				
Tutorial	: 00		TW & OR: 50 Marks	Credit: 01			
				Total Credit: 1			
Course	Pre-requ	isites:					
		signals and sys	stems and control systems.				
Course	Objectiv	es:					
1.		To introduce the	he transducers and sensors which will help direct measurement of electronic, electrical, and				
		communication	n parameters.				
Course	Outcome	es: After lear	rning this course students will be able to				
1	Characte	rize the temper	rature sensors.				
2	Simulate the performance of a bio-sensor.						
3	Measurement of level in a tank using capacitive type level probe.						
4	Characterize the LVDT						
5	5 Design an orifice plate for a typical application.						

6	Simulate the performance of a chemical sensor.
7	Characterize the strain gauge sensor.
List of	Practicals to be performed in the laboratory
1.	To learn the various static and dynamic characteristics of measurement systems.
2.	Characterize the temperature sensor (RTD) on virtual lab
3.	Measurement of level in a tank using capacitive type level probe on virtual lab
4.	Characterize and analyze the working of the LVDT.
5.	Characterize the strain gauge sensor.
6.	To measure and study of Pressure indicator With Pressure Output in percentage
7.	To measure and study of Flow Indicator with Flow rate, Totalizer
8.	To measure and study of Level Indicator with MM, CM and percentage
9.	To study Inductive rotor position sensor with four inductive coils using MATLAB
10.	To study Electrothermal converter using MATLAB.
11.	To study Rotary transformer for measurement of angle of rotation using MATLAB
12.	To study Exponential light-emitting diode with optical power output port using MATLAB
Text B	Books&Reference Books:

- 1. H. S. Kalsi, "Digital Instrumentation", Tata McGraw Hill
- 2. Clyde F. Coombs "Electronic Instrumentation Handbook" McGraw Hill
- 3. Cooper Helfric, "Electronic Instrumentation & Measurement Techniques", Prentice Hall Publication

	B. Tech. Sem. IV: Electronics & Telecommunication Engineering							
TEACI	SUBJECT: - Calibration and Repair of Lab Equipments TEACHING SCHEME:							
ILAU		<u></u>	EAAMINATION SCHEME:	CREDITS ALLOTTED:				
Theory:	: 00		End Semester Examination: 00	Credits: 00				
Practica	al: 00		Internal Assessment: 00					
Tutorial	1: 00		TW & OR: 50 Marks	Credit: 02				
				Total Credits: 2				
			· · · · · · · · · · · · · · · · · · ·					
Course	Pre-req	uisites:						
		Fundamentals	of Electrical Engineering, Basic Electron	ics,Digital Electronics				
Course	Objectiv	ves:						
		• To tea	ch the student to use and measurement of	Lab Equipment's.				
		• To tea	ch measurement characteristics of Lab Ec	luipment's				
		To pro	ovide the basics knowledge of analysis and	d design of Lab Equipment's.				
		• To tra	in the students for troubleshoot Lab Equip	oment's.				
		• To tra	in the students for repair Lab Equipment's	5.				
	• To train the students for calibrate Lab Equipment's.							
Course	Outcom	es: After lea	rning this course students will be able t	to				
1	Identity	and detect fau	lt in power supply.					
2	Analyze	e and repair Tru	a RMS meter and DMM.					
3	Analyze and repair of Energy meter							

4	Identify and detect fault in Different Indicators.
5	Identify and repair different faults in function generator and Oscilloscope.
6	Measure and Repair Electrosmog Meter.
Term V	Work:
1.	Troubleshoot and Repair of power supply.
2.	Troubleshoot and Repair megger digital.
3.	Troubleshoot and Repair Digital Multi-Meter.
4.	Troubleshoot and Repair True RMS meter.
5.	Troubleshoot and Calibrate 1 phase and 3 phase Energy meter.
6.	Troubleshoot and Calibrate Pressure indicator.
7.	Troubleshoot and Calibrate Flow Indicator.
8.	Troubleshoot and Calibrate Level Indicator.
9.	Troubleshoot and Repair function generator
10.	Troubleshoot and Repair CRO and DSO
11.	Troubleshoot and Repair ELECTROSMOG Meter
Text B	ooks:
6.	"Troubleshooting Electronic Equipment" by R. Khandpur
7.	"How to Diagnose and Fix Everything Electronic", Second Edition by Michael Jay Geier
Refere	nce Books:
1.	H. S. Kalsi, "Digital Instrumentation", Tata McGraw Hill

2. Clyde F. Coombs "Electronic Instrumentation Handbook" McGraw Hill

3. Cooper Helfric, "Electronic Instrumentation & Measurement Techniques", PrenticeHall Publication

BHARATI VIDYAPEETH (DEEMED TO BE) UNIVERSITY, PUNE

Syllabus for

MASTER OF SCIENCE

M.Sc. in ENVIRONMENT SCIENCE AND TECHNOLOGY

Under

FACULTY OF SCIENCE

Course Structure and Detailed Syllabus Semester I, II, III and IV (UNDER CHOICE BASED CREDIT SYSTEM) Effective from the Academic Year 2019-2020

SEMESTER WISE COURSE INFORMATION

Course Number	Course Title	Credit Value	Hours per week	Weightage	Weightage	ΕοΤΜ
				(UE)	(IA)	
	Core Courses					
EST 101	Ecosystem Studies	3	3	60	40	University
EST 102	Environmental Chemistry and Microbiology	3	3	60	40	University
GEO 102	Fundamentals of Geoinformatics	3	3	60	40	University
EST 103	Sustainable development	3	3	60	40	University
EST 111	Field techniques - I	2	3	60	40	University
EST 112	Lab Analytical techniques - I	2	3	60	40	University
GEO 112	Techniques in Geographical Information Systems	2	3	60	40	University
	Pre-requisites					
EST 104	Basic Statistical Methods	3	3		100	Continuous
EST 105	Introduction to Data Analysis	3	3		100	Continuous
	Total Credits / Hours	22	27			

Semester I

From the core courses:

Course Nos EST 101, EST 102, Geo 102, EST 103 are theory courses Course Nos EST 111, EST 112, GEO 112 are practical courses

Total credits offered in Semester I : 22

Semester II

Course	Course Title	Credit	Hours per	Weightage	Weightage	EoTM
Number		Value	week	(UE)	(IA)	
	Core Courses					
EST 201	Biodiversity Assessment and Conservation	3	3	60	40	University
EST 202	Engineered Systems for Water and Waste Water	3	3	60	40	University
EST 203	Solid and Hazardous Waste Management	3	3	60	40	University
EST 204	Air and Noise Pollution Management	3	3	60	40	University
EST 205	Research Methodology	2	3		100	Continuous
EST 211	Field Techniques - II	2	3	60	40	University
EST 212	Lab Analytical techniques - II	2	3	60	40	University
EST 213	<mark>Field Work</mark>	2	60 <mark>(cumulativ</mark> e)		<mark>100</mark>	<mark>Continuous</mark>
	Electives (any two)					
EST 206	Natural Resource Management	3	3		100	Continuous
EST 207	Environment and Health	3	3		100	Continuous
EST 208	Climate Change Science and Strategies	3	3		100	Continuous
EST 209	Data Analysis with R	<mark>3</mark>	<mark>3</mark>		<mark>100</mark>	<mark>Continuous</mark>
EST 2010	Instrumentation and Lab Management for environmental analysis	3	3		100	Continuous
EST 2011	Environmental biotechnology	3	3		100	Continuous
	General Courses (any one)					
GEN 201	General English	2	2		50	Continuous
GEN 202	Project Management	2	2		50	Continuous
	Total	28	32			

Course Nos EST 201, EST 202, EST 203, EST 204 and EST 205 are theory courses Course Nos EST 211, EST 212, EST 213 are practical courses

Total Credits offered in Semester II : 28

Semester III

Course	Course Title	Credit	No. of	Weightage	Weightage	EoTM
Number		Value	hours per week	UE	IE	
	Core Courses					
EST 301	Integrated Impact Assessment	3	3	60	40	University
EST 302	Environmental Policies and Law	3	3	60	40	University
EST 311	Dissertation	12	14	60	40	University
EST 303	Technical Writing	<mark>2</mark>	<mark>3</mark>		<mark>100</mark>	<mark>Continuous</mark>
	Electives (any three)					
EST 304	Environment Management Techniques	3	3		100	Continuous
EST 305	Water Management	3	3		100	Continuous
GEO 303	Applications of geospatial technologies	3	3		100	Continuous
EST 306	Urban Environment Management	3	3		100	Continuous
EST 307	Advanced Pollution Control Technology	3	3		100	Continuous
	General Courses (any one)					
<mark>GEN 301</mark>	Swaach Bharat Abhiyan Internship	<mark>2</mark>	2		<mark>50</mark>	<mark>Continuous</mark>
<mark>GEN 302</mark>	Education for Sustainable Development	2	2		<mark>50</mark>	<mark>Continuous</mark>
	Total	31	34			

From the core courses:

Course Nos EST 301, EST 302, EST 303 are theory courses Course Nos EST 311 is dissertation.

Total Credits offered in Semester III : 31

Semester IV

Course	Course Title	Credit	Hours per	Weightage	Weightage	EoTM
Number		Value	week	UE	IA	
	Core Courses					
EST 411	Dissertation	12	14	60	40	University
	Electives (any four)					
EST 401	Ecorestoration	3	3		100	Continuous
EST 402	Corporate Social Responsibility and Sustainability	3	3		100	Continuous
EST 403	Certification for ISO 14001	<mark>3</mark>	<mark>3</mark>		<mark>100</mark>	<mark>Continuous</mark>
EST 404	Urban Sustainability	3	3		100	Continuous
EST 405	Industrial Safety and Occupational Health (certifications)	3	3		100	Continuous
EST 406	Green technology and Management	3	3		100	Continuous
EST 407	<mark>Green Buildings</mark>	<mark>3</mark>	<mark>3</mark>		<mark>100</mark>	<mark>Continuous</mark>
	General Courses (any one)					Continuous
GEN 401	Entrepreneurship Development	2	2		50	Continuous
GEN 402	Soft Skills	2	2		50	Continuous
	Total	26	28			

From the core courses:

Course Nos EST 411 is dissertation.

Total Credits offered in Semester IV : 30

BHARATI VIDYAPEETH (DEEMED TO BE) UNIVERSITY, PUNE

Syllabus for

MASTER OF SCIENCE

M.Sc. in GEOINFORMATICS

Under

FACULTY OF INTERDISCIPLINARY STUDIES

Course Structure and Detailed Syllabus

Semester I, II, III and IV

(UNDER CHOICE BASED CREDIT SYSTEM)

Effective from the Academic Year 2019-2020
Semester I

Course Number	Course Title	Credit Value	Hours per week	Weightage UE	Weightage IA	EoTM
	Core Courses					
GEO101	Fundamentals of remote sensing	3	3	60	40	University
GEO 102	Fundamentals of Geoinformatics	3	3	60	40	University
GEO 103	Fundamentals of programming	3	3	60	40	University
EST 101	Ecosystem Studies	3	3	60	40	University
EST 306	Urban Environment Management	3	3	60	40	University
EST 111	Field techniques –I	2	3	60	40	University
GEO 111	Techniques in image interpretation and remote sensing	2	3	60	40	University
GEO 112	Techniques in Geographical Information Systems	2	3	60	40	University
	Pre-requisites					
EST 104	Basic Statistical Methods	3	3		100	Continuous
EST 105	Introduction to Data Analysis	3	3		100	Continuous
	Total	27	30			

From the core courses:

Course Nos GEO 101, GEO 102, Geo 103, EST 101, EST 306 are theory courses Course Nos EST 111, GEO 111, GEO 112 are practical courses

Total credits offered in Semester I : 27

Semester II

Course	Course Title	Credit	Hours per	Weightage	Weightage	EoTM
Number		value	Week	UE	IA	
	Core Courses					
GEO 201	Geodatabase Management	3	3	60	40	University
GEO 202	Advanced Remote Sensing	3	3	60	40	University
GEO 203	Digital Image Processing	3	3	60	40	University
GEO 204	WebGIS	3	3	60	40	University
GEO 205	Research Methodology	2	2		100	Continuous
GEO 211	Techniques in database management	2	3	60	40	University
EST 212	Techniques in digital image processing	2	3	60	40	University
GEO 213	Programming for GIS-I	2	3	60	40	University
GEO 214	Field Work	2	60 (cumulative)		<mark>100</mark>	<mark>Continuous</mark>
	Electives (any two)					
EST 201	Biodiversity assessment and conservation	3	3		100	Continuous
EsT 206	Natural resource management	3	3		100	Continuous
EST 207	Health GIS	3	3		100	Continuous
EST 208	Climate change science and strategies	3	3		100	Continuous
EST 209	Data Analysis with R	<mark>3</mark>	<mark>3</mark>		<mark>100</mark>	Continuous
	General Courses (any					

	one)				
GEN 201	General English	2	2	100	Continuous
GEN 202	Project Management	2	2	100	Continuous
	Total	30	31		

From the core courses:

Course Nos GEO 201, GEO 202, GEO 203, GEO 204, are theory courses

Course Nos GEO 211, GEO 212, Geo 213, GEO 214 are practical courses

Total Credits offered in Semester II : 30

Course	Course Title	Credit	No. of	Weightage	Weightage	ΕοΤΜ	
Number		Value	Hours/ week	UE	IA		
	Core Courses						
GEO 301	Spatial analysis and modeling	and 3 3 60		40	40 University		
GEO 311	Programming for GIS-II	3	3	60	40	University	
GEO 312	Dissertation	12	14	60	40	University	
GEO 313	Programming for GIS-III	2	3	60	40	University	
GEO 314	Techniques in Spatial Statistics, Analysis and Modeling	2	3	60	40	University	
	Electives (any two)						
GEO 302	Geospatial Modeling	3	3		100	Continuous	
GEO 303	Applications of geospatial technologies	3	3		100	Continuous	
GEO 304	Photogrammetry	3	3		100	Continuous	
GEO 305	Water management and Geospatial Technologies	3	3		100	Continuous	
	General Courses (any one)						
GEN 301	Technical Writing	<mark>2</mark>	<mark>2</mark>		<mark>100</mark>	<mark>Continuous</mark>	
GEN 302	Soft Skills	2	2		100	Continuous	
	Total	30	34				

From the core courses:

Course Nos GEO 301 is a theory course.

Course Nos GEO 311, GEO 313, GEO 314 are practical courses

Total Credits offered in Semester III : 30

Semester IV

Course Number	Course Title	Credit Value	Hours per week	Weightage UE	Weightage IA	ΕοΤΜ
	Core Courses					
GEO 411	Dissertation	12	14	60	40	University
GEO 412	Internship	10	20	60	40	University
	General Courses (any one)					
GEN 401	Entrepreneurship Development	2	2		100	Continuous
	Total	24	36			

Total Credits offered in Semester IV : 24

BHARATI VIDYAPEETH (DEEMED TO BE) UNIVERSITY, PUNE

Faculty Of Interdisciplinary Studies

M.Sc. (Wildlife Conservation Action)

COURSE STRUCTURE AND DETAILED SYLLABUS OF SEMESTER I, II, III and IV (UNDER CREDIT SYSTEM) EFFECTIVE FROM 2019-2020 AT SEMESTER I

At the

INSTITUTE OF ENVIRONMENT EDUCATION AND RESEARCH BHARATI VIDYAPEETH UNIVERSITY, PUNE In collaboration with

WILDLIFE TRUST OF INDIA, NEW DELHI

SEMESTER WISE COURSE INFORMATION

Course Number	Course Title	Credit Value	Hours per week	Weightage UE	Weightage IA	ΕοΤΜ
EST 101	Ecosystem Studies	3	3	60	40	University
<mark>CA 101</mark>	Sustainability Of Socio- Ecological Systems	<mark>3</mark>	<mark>3</mark>	<mark>60</mark>	<mark>40</mark>	<mark>University</mark>
CA 102	Wildlife Law And Trade Control	3	3	60	40	University
<mark>CA 103</mark>	Conservation Problems And Practices	<mark>3</mark>	<mark>3</mark>	<mark>60</mark>	<mark>40</mark>	<mark>University</mark>
GEO 102	Fundamentals Of Geoinformatics	3	3	60	40	University
EST 111	Field Techniques I	2	3	60	40	University
GEO 112	Techniques In Geographical Information Systems	2	3	60	40	University
CA 104	Research Methodology	2	2		100	Continuous
<mark>CA 111</mark>	Field Taxonomy I	<mark>2</mark>	<mark>60 hours</mark> cumulative		<mark>100</mark>	<mark>Continuous</mark>
	General Courses					
EST 104	Statistical Methods	3	3		100	Continuous
EST 105	Introduction To Data Analysis	3	3		100	Continuous
	Total	29	32			

Semester I

From the core courses:

Course Nos EST 101, CA 101, CA 102, CA 103, GEO 102, CA 104 are theory courses Course Nos EST 111, GEO 112, CA 111 are practical courses

Total Credits offered in Semester I : 29

Course	Course Title	Credit Value	Hours	Weightage	Weightage	ΕοΤΜ
Number		Value	week	UE	IA	
EST 201	Biodiversity Assessment And Conservation	3	3	60	40	University
CA 201	Wildlife Health, Rescue And Rehabilitation	3	3	60	40	University
<mark>CA 202</mark>	Behavioural Ecology	<mark>3</mark>	<mark>3</mark>	<mark>60</mark>	<mark>40</mark>	<mark>University</mark>
<mark>CA 211</mark>	Advanced Statistics	<mark>2</mark>	<mark>3</mark>		<mark>100</mark>	<mark>Continuous</mark>
CA 212	Field Techniques II	2	3	60	40	University
CA 213	Field Taxonomy II	2				
<mark>CA 214</mark>	Field Work	2	60 (cumu lative)		<mark>100</mark>	<mark>Continuous</mark>
	Electives (any two)					
EST 206	Natural Resource Management	3	3		100	Continuous
EST 401	Ecorestoration	<mark>3</mark>	<mark>3</mark>		100	Continuous
<mark>CA 203</mark>	<mark>Urban Biodiversity</mark>	<mark>3</mark>	<mark>3</mark>		<mark>100</mark>	Continuous
	General Courses					
GEN 201	General English	2	2		100	Continuous
<mark>GEN 202</mark>	Technical Writing	2	<mark>2</mark>		<mark>100</mark>	<mark>Continuous</mark>
	Total	25	26			

Semester II

From the core courses:

Course Nos EST 201, CA 201, CA 202 are theory courses Course Nos CA 211, CA 212, CA 213, CA 214 are practical courses

Total Credits offered in Semester II: 24

Semester III

Course Number	Course Title	Credit Value	Hours per week	Weightage UE	Weightage IA	ΕοΤΜ
	Core Courses					
CA 311	Dissertation	24	40	60	40	University
	General Courses					
<mark>GEN</mark> 301	Project Management	2	2		<mark>100</mark>	<mark>Continuous</mark>
	Total	26	42			

Total Credits offered in Semester III: 26

Course **Course Title** Credit Hours Weightage Weightage EoTM Number Value per UE IA week **Core Courses** CA 411 10 40 60 40 University Internship Electives (any three) <mark>3</mark> **Conservation** <mark>3</mark> <mark>CA 401</mark> <mark>100</mark> **Continuous** Leadership <mark>CA 402</mark> **Conservation** <mark>3</mark> <mark>3</mark> <mark>100</mark> **Continuous** Communication, Education And Public Awareness <mark>CA 403</mark> **Conservation** <mark>3</mark> <mark>3</mark> <mark>100</mark> **Continuous Management** EST 208 Climate Change Science 3 3 100 Continuous And Strategies General Credit Course 2 <mark>GEN 401</mark> Entrepreneurship 2 <mark>100</mark> **Continuous Development** GEN 402 Soft Skills 2 2 100 Continuous Total 24 54

Semester IV

Total Credits offered in Semester IV : 24

<u>Bharati Vidyapeeth (Deemed to be University) Institute of Management & Entrepreneurship Development, Pune</u>

T.1.3 Lotal number of courses having focus on emplo	oyability/ entrepr	eneurship/ skill develor	ment offered by the University 1 une	Г
	year:	64	ment offered by the officersity during the	
Inditie of the Course	Course Code	Year of introduction	Activities/Content with direct bearing on	Τ_
1			Employability/ Entrepreneurship/ Skill	
115 Data Analycic using Cattorn T. 1. 1992			development	
211 Data Analysis Using Software Tools (MS Excel)	115	1st July 2016	Skill Development	Т
202 F 1 Uata Analysis using Software Tools (SPSS)	211	1st July 2016	Skill Development	Т
303 Entrepreneurship Development	303	1st July 2016	Entrepreneurship	T
out summer internship	304	1st July 2016	Employability	Т
305 Distance of the second of the second sec	305	1st July 2016	Skill Development	Т
aud Digital Marketing	306	1st July 2016	Employability and Entremanentichin	Т
401 Project Management	401	1st July 2016	Employability and Entreprenentishin	Т
414 HK ANAIYTICS	414	1st July 2016	Employability	Т
410 Financial Modeling using MS Excel	410	1st July 2016	Skill Development	
40b Social Media Marketing	406	1st July 2016	Employability	-
419 Big Data Analysis	419	1st July 2016	Employability	Т
PO 03 Logistics and Supply Chain Management	PO 03	1st July 2016	Employability	<u> </u>
102 -Business Organization & Systems	102	1st July 2018	Entroncoscienti	_
106 - Career & Life Skills	106	1ct huly 2010		_
206 - Sectoral Analysis	206	124 111 2010	Skill Development	
305 - Entrepreneurshin Davalonmant	201	8102 Vint 1st	Employability	_
	305	1st July 2018	Entrepreneurship	
40. Partericuls Personal & Protessional Skills	401	1st July 2018	Skill Development	
400 - Basics of Laxation	406	1st July 2018	Employability	_
Jub- Social Media Management	506	1st July 2018	Employability	
601 - Industrial Exposure.	601	1st July 2018	Employability	-
506 - Event Management	506	1st July 2018	chipoyability Skill Dovolosmost	
M603 - Integrated Marketing communication	M603	lst hilv 2018		
M604- Digital Marketing	M604	let hulv 2010		(1
F503 - Elements of Financial Services	FE03	ct lub: 2010	Employability and Entrepreneurship	B
HR503- Performance & Compensation Management		STUS VILLE	Employability	2
B504- Export Import Procedures and Documentation		st July 2018	Employability	
FD503- Entremembership & Non-West	IB504 1	st July 2018	Employability and Entrepreneurship DINEC	TOR
LOOD LITTE PIETENISTIP & INEW VENTURES CREATION	ED503 1	st July 2018	Entrepreneurshin Devolution to to the the	dyapeeti

velopment to be University) Pune, India Institute of Management and Entrepreneurship Development Pune - 411 038.

R

ED603- E - Commerce	ED603	1ct Indv 2018	
ED604- Managing Family Business	EDEDA	101 1 1 2010	Entrepreneurship
FM503-Introduction to Financial Markets and Financial	LU004	8107 Ainf 1st	Entrepreneurship
Institutions	EM503	1c+ 1 2010	
Algorithm and program Design (102)	001	8102 Vint 121	Skill Development and Employability
C Programming – 1 (103)	707	Ist July 2018	Skill Development (Logical skills)
Business Mathematics (10k)	103	1st July 2018	Employability
	105	1st July 2018	Skill Development
	106	1st July 2018	Employability
Lab on C Programming – I (107)	107	1st July 2018	Employability
Jueneral course-I:Community Work I / Career & Life Skills		2.22 (Linpioyability
/ Waste Management (108)	108	1st July 2018	Skill Douglosmost
C Programming - II (203)	203	1st July 2018	Employability
Lab on C Programming - II (206)	206	1st July 2018	Employability
Lab on Oracle and Multimedia (306)	306	1st July 2018	
Lab on Linux Operating System (307)	307	1st Inly 2018	Employability
Entrepreneurship Development (405)	405	1ct Iuly 2010	Empioyability
Lab on Java (406)	100		Entrepreneurship
Minor Project – 1 (407)	406	1st July 2018	Employability
	407	1st July 2018	Employability
Lab on Internet Technology and C# Programming (506)	506	1ct Indv 2018	
Minor Project II (507)	507	1ct 1uly 2010	Employability
C Programming (101)	101		Employability
Discrete Structures (104)	101	1st July 2018	Employability
Web Sunnorting Technologics (100)	104	1st July 2018	Skill Development
Clah (107)	106	1st July 2018	Employability
Soft Skills (108)	107	1st July 2018	Employability
Self learning 1 (Societed Boltzed Transmission)	108	1st July 2018	Skill Development
Deta structure and Alexandro (109)	109	1st July 2018	Skill Development
Ctatistical T - 1 · · · · · · · · · · · · · · · · · ·	201	1st July 2018	Skill Development
suduistical lechniques (204)	204	1st July 2018	Skill Davelonment
Uatabase Management Systems Lab (206)	206	1st July 2018	Employobility
DataStructures Lab (207)	207	1st July 2018	
Project-I (208)	208	1st July 2018	
Object Oriented Analysis And Design (303)	303	1st July 2018	Employability
Probability and Graph theory (304)	304	1st July 2018	
		2: 22 (in 2 ; 2.	Employability Bharati Vi

DIRECTOR Bharati Vidyapeeth (Deemed to be University)Pune, Indía Institute of Management and Entrepreneurship Development Pune - 411 038.

a

	Employed Hit	cimpioyability	Employability	Thinpioyability	Employability	Luipiuyability	Employee Lits			Employability		Employability	
	1st July 2018	0107 (100-1-1	1st July 2018		11st July 2018		11st July 2018	0102 (1st July 2018	0102 6000	1ct Intv 2010	I or any EU IO	
	401	100	402	202	403	104	407		501		601		
Data Warehousing and Data Mining (101)		IIIIOTMATION Security (402)	Decian Dattom - (100)	resign ratierns (403)	(100) ab (403)	CIIIUX LAD (4U/)	ats feither that	Udid Science (501)		Internship Project (601)			

DIRECTOR Bharati Vidyapeeth Bharati Vidyapeeth (Deemed to be University)Pune, India Institute of Management and Entrepreneurship Development Pune - 411 038.

1